Skip to main content

Ad-Hoc Framework for Efficient Network Security for Unmanned Aerial Vehicles (UAV)

  • Conference paper
  • First Online:
Future Network Systems and Security (FNSS 2019)

Abstract

With the emerging new applications, UAVs are incorporating to our daily lifestyle. The convenience of offering certain services via UAV using its cyber capabilities is very attractive but on the other side poses a great threat of safety and security. With the ever-growing use of commercial WiFi based UAVs, the enduring ability for cybersecurity and safety threats has become a sophisticated problem. UAV networks are susceptible to several common security risks including eavesdropping and jamming attack, denial of service (DoS) or buffer overflow attack by malicious remote attackers. Because of the unique nature of UAV networks, traditional security techniques used by conventional networks is not feasible for UAV communication. The resource constraint nature of such WiFi based UAV network is a key design problem, when implementation of security. Address security issues for UAV domain and propose to examine the practicality of using Identity Based Encryption (IBE) in resource constraint UAV network is our aim in this study. We would like to assess the practicality and performance of IBE in UAV network by measuring energy of the operations for key management and examine the feasibility of the approach and thus present an efficient security framework for resource constrained wireless UAV network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dini, G., Tiloca, M.: A simulation tool for evaluating attack impact in cyber physical systems. In: Hodicky, J. (ed.) MESAS 2014. LNCS, vol. 8906, pp. 77–94. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13823-7_8

    Chapter  Google Scholar 

  2. Rani, C., Modares, H., Sriram, R., Mikulski, D., Lewis, F.L.: Security of unmanned aerial vehicle systems against cyber-physical attacks. J. Defense Model. Simul.: Appl. Methodol. Technol. 13(3), 331–342 (2015)

    Article  Google Scholar 

  3. Snell, B.: McAfee Labs 2017 threats predictions: “Dronejacking” places threats in the sky, November 2016, 2017. https://www.mcafee.com/au/resources/reports/rp-threats-predictions-2017.pdf

  4. FAA Releases 2016 to 2036 Aerospace Forecast (2016). https://www.faa.gov/news/updates/?newsId=85227

  5. Nassi, B., Shabtai, A., Masuoka, R., Elovici, Y.: SoK-security and privacy in the age of drones: threats, challenges, solution mechanisms, and scientific gaps. arXiv preprint arXiv:1903.05155 (2019)

  6. Moormann, D.: DHL parcelcopter research flight campaign 2014 for emergency delivery of medication (2015)

    Google Scholar 

  7. Hooper, M., et al.: Securing commercial WiFi-based UAVs from common security attacks, pp. 1213–1218. IEEE (2016)

    Google Scholar 

  8. Securitymagazine: Privacy and security are biggest concerns about the business use of drones, 2 March 2017. https://www.securitymagazine.com/articles/87868-privacy-and-security-are-biggest-concerns-about-the-business-use-of-drones

  9. Gallagher, S.: Triathlete injured by “hacked” camera drone (2014). https://arstechnica.com/security/2014/04/triathlete-injured-by-hacked-camera-drone/. Accessed June 2017

  10. Hartmann, K., Steup, C.: The vulnerability of UAVs to cyber attacks-an approach to the risk assessment, pp. 1–23. IEEE (2013)

    Google Scholar 

  11. Samland, F., Fruth, J., Hildebrandt, M., Hoppe, T., Dittmann, J.: AR. drone: security threat analysis and exemplary attack to track persons. In: International Society for Optics and Photonics, p. 83010G (2012)

    Google Scholar 

  12. Trujano, F., Chan, B., Beams, G., Rivera, R.: Security analysis of DJI phantom 3 standard. Massachusetts Institute of Technology (2016)

    Google Scholar 

  13. Reddy, S.V., Ramani, K.S., Rijutha, K., Ali, S.M., Reddy, C.P.: Wireless hacking-a WiFi hack by cracking WEP, pp. V1-189–V1-193. IEEE (2010)

    Google Scholar 

  14. Kamkar, S.: SkyJack (2013). Accessed June 2019

    Google Scholar 

  15. Kovar, D.: UAVs, IoT, and Cybersecurity (2016)

    Google Scholar 

  16. Altawy, R., Youssef, A.M.: Security, privacy, and safety aspects of civilian drones: a survey. ACM Trans. Cyber-Phys. Syst. 1(2), 7 (2017)

    Google Scholar 

  17. Parrot Ar.Drone 2.0 Power Edition, Technical Specifications. https://www.parrot.com/global/drones/parrot-ardrone-20-power-edition

  18. PARROT Bebop 2 Power - Pack FPV, Technical Specifications. https://www.parrot.com/global/drones/parrot-bebop-2-power-pack-fpv

  19. Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: AR-drone as a platform for robotic research and education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 172–186. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21975-7_16

    Chapter  Google Scholar 

  20. Valente, J., Cardenas, A.A.: Understanding security threats in consumer drones through the lens of the discovery quadcopter family, pp. 31–36. ACM (2017)

    Google Scholar 

  21. Pleban, J.-S., Band, R., Creutzburg, R.: Hacking and securing the AR. drone 2.0 quadcopter: investigations for improving the security of a toy. In: International Society for Optics and Photonics, p. 90300L (2014)

    Google Scholar 

  22. Giray, S.M.: Anatomy of unmanned aerial vehicle hijacking with signal spoofing, pp. 795–800. IEEE (2013)

    Google Scholar 

  23. Fang, Y., Zhu, X., Zhang, Y.: Securing resource-constrained wireless ad hoc networks. IEEE Wirel. Commun. 16(2), 24–30 (2009)

    Article  Google Scholar 

  24. Doyle, B., Bell, S., Smeaton, A.F., McCusker, K., O’Connor, N.E.: Security considerations and key negotiation techniques for power constrained sensor networks. Comput. J. 49(4), 443–453 (2006)

    Article  Google Scholar 

  25. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  26. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  27. Kodali, R.K., Chougule, S.K.: Hierarchical key agreement protocol for wireless sensor networks. Int. J. Recent Trends Eng. Technol. 9(1), 25 (2013)

    Google Scholar 

  28. Bekmezci, I., Sahingoz, O.K., Temel, Ş.: Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

    Article  Google Scholar 

  29. Chien, H.-Y., Lin, R.-Y.: Identity-based key agreement protocol for mobile ad-hoc networks using bilinear pairing, pp. 8–pp. IEEE (2006)

    Google Scholar 

  30. Yu, F.R., Tang, H., Mason, P.C., Wang, F.: A hierarchical identity based key management scheme in tactical mobile ad hoc networks. IEEE Trans. Netw. Serv. Manag. 7(4), 258–267 (2010)

    Article  Google Scholar 

  31. Sliwa, B., Ide, C., Wietfeld, C.: An OMNeT++ based framework for mobility-aware routing in mobile robotic networks. arXiv preprint arXiv:1609.05351 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Samsul Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haque, M.S., Chowdhury, M.U. (2019). Ad-Hoc Framework for Efficient Network Security for Unmanned Aerial Vehicles (UAV). In: Doss, R., Piramuthu, S., Zhou, W. (eds) Future Network Systems and Security. FNSS 2019. Communications in Computer and Information Science, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-030-34353-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34353-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34352-1

  • Online ISBN: 978-3-030-34353-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics