Skip to main content

Monte Carlo Tree Search on Directed Acyclic Graphs for Object Pose Verification

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11754))

Included in the following conference series:

Abstract

Reliable object pose estimation is an integral part of robotic vision systems as it enables robots to manipulate their surroundings. Powerful methods exist that estimate object poses from RGB and RGB-D images, yielding a set of hypotheses per object. However, determining the best hypotheses from the set of possible combinations is a challenging task. We apply MCTS to this problem to find an optimal solution in limited time and propose to share information between equivalent object combinations that emerge during the tree search, so-called transpositions. Thereby, the number of combinations that need to be considered is reduced and the search gathers information on these transpositions in a single statistic. We evaluate the resulting verification method on the YCB-VIDEO dataset and show more reliable detection of the best solution as compared to state of the art. In addition, we report a significant speed-up compared to previous MCTS-based methods for object pose verification.

Funded by the TU Wien Doctoral College TrustRobots. Partially funded by OMRON Corporation and Aeolus, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldoma, A., Tombari, F., Di Stefano, L., Vincze, M.: A global hypotheses verification method for 3D object recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 511–524. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_37

    Chapter  Google Scholar 

  2. Aldoma, A., Tombari, F., Di Stefano, L., Vincze, M.: A global hypothesis verification framework for 3D object recognition in clutter. IEEE TPAMI 38(7), 1383–1396 (2016)

    Article  Google Scholar 

  3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  Google Scholar 

  4. Bauer, D., Patten, T., Vincze, M.: 6D object pose verification via confidence-based Monte Carlo tree search and constrained physics simulation. In: OAGM & ARW Joint Workshop, pp. 153–158 (2019)

    Google Scholar 

  5. Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., et al.: Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image. In: IEEE CVPR, pp. 3364–3372 (2016)

    Google Scholar 

  6. Browne, C.B., et al.: A survey of Monte Carlo tree search methods. T-CIAIG 4(1), 1–43 (2012)

    Google Scholar 

  7. Childs, B.E., Brodeur, J.H., Kocsis, L., et al.: Transpositions and move groups in Monte Carlo tree search. In: IEEE CIG, pp. 389–395 (2008)

    Google Scholar 

  8. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: IEEE CVPR, pp. 998–1005 (2010)

    Google Scholar 

  9. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  10. Gaudel, R., Sebag, M.: Feature selection as a one-player game. In: ICML, pp. 359–366 (2010)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  12. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  13. Hodaň, T., et al.: BOP: benchmark for 6D object pose estimation. In: ECCV, pp. 19–34 (2018)

    Google Scholar 

  14. Hodaň, T., Zabulis, X., Lourakis, M., Obdržálek, Š., Matas, J.: Detection and fine 3D pose estimation of texture-less objects in RGB-D images. In: IEEE/RSJ IROS, pp. 4421–4428 (2015)

    Google Scholar 

  15. Kehl, W., Milletari, F., Tombari, F., Ilic, S., Navab, N.: Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 205–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_13

    Chapter  Google Scholar 

  16. Mitash, C., Boularias, A., Bekris, K.E.: Improving 6D pose estimation of objects in clutter via physics-aware Monte Carlo tree search. In: IEEE ICRA, pp. 1–8 (2018)

    Google Scholar 

  17. Narayanan, V., Likhachev, M.: Perch: perception via search for multi-object recognition and localization. In: IEEE ICRA, pp. 5052–5059 (2016)

    Google Scholar 

  18. Pélissier, A., Nakamura, A., Tabata, K.: Feature selection as Monte-Carlo search in growing single rooted directed acyclic graph by best leaf identification. In: SDM, pp. 450–458 (2019)

    Chapter  Google Scholar 

  19. Saffidine, A., Cazenave, T., Méhat, J.: UCD: upper confidence bound for rooted directed acyclic graphs. Knowl.-Based Syst. 34, 26–33 (2012)

    Article  Google Scholar 

  20. Tejani, A., Tang, D., Kouskouridas, R., Kim, T.-K.: Latent-class hough forests for 3D object detection and pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 462–477. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_30

    Chapter  Google Scholar 

  21. Vidal, J., Lin, C.Y., Martí, R.: 6d pose estimation using an improved method based on point pair features. In: ICCAR, pp. 405–409 (2018)

    Google Scholar 

  22. Wang, C., et al.: DenseFusion: 6D object pose estimation by iterative dense fusion. In: IEEE CVPR (2019)

    Google Scholar 

  23. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3D pose estimation. In: IEEE CVPR, pp. 3109–3118 (2015)

    Google Scholar 

  24. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: CoRR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer, D., Patten, T., Vincze, M. (2019). Monte Carlo Tree Search on Directed Acyclic Graphs for Object Pose Verification. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds) Computer Vision Systems. ICVS 2019. Lecture Notes in Computer Science(), vol 11754. Springer, Cham. https://doi.org/10.1007/978-3-030-34995-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34995-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34994-3

  • Online ISBN: 978-3-030-34995-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics