Skip to main content

Conditional Generative Adversarial Networks for Data Augmentation in Breast Cancer Classification

  • Conference paper
  • First Online:
Recent Advances on Soft Computing and Data Mining (SCDM 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 978))

Included in the following conference series:

Abstract

Automatic breast cancer classification benefits pathologists in obtaining fast and precise diagnoses and improving early detection. However, the performance of deep learning models depends greatly on the quality and quantity of the datasets used. Due to the complexity and high costs of patient data collection, many medical datasets, particularly for pathological conditions, suffer from small sample sizes. Hence, developing a deep learning solution for breast cancer classification is still challenging. Data augmentation is one of the popular approaches to bridge this gap. In this work, we propose to use Conditional Generative Adversarial Networks (CGANs) for data augmentation. The aim of training CGANs is to generate a new set of realistic synthetic images and combine these together with real images to form a new augmented training set. The experiments show that most of the images produced by CGAN are reliable and classification performance with CGAN-based data augmentation can achieve good results. This method, unlike traditional data augmentation, can produce histopathological images that are completely different from the existing data. Therefore, this technique has the potential to address data scarcity and to directly benefit the training of deep learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer: Breast cancer. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/

  2. Why is early diagnosis important? (2018). https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-important

  3. Bayramoglu N, Kannala J, Heikkil J (Dec 2016) Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd international conference on pattern recognition (ICPR), pp 2440–2445. https://doi.org/10.1109/ICPR.2016.7900002

  4. Bowles C, Chen L, Guerrero R, Bentley P, Gunn R, Hammers A, Dickie DA, Valdés Hernández M, Wardlaw J, Rueckert D (2018) GAN augmentation: augmenting training data using generative adversarial networks. CoRR abs/1810.10863. http://arxiv.org/abs/1810.10863

  5. Chattoraj, S., Vishwakarma, K.: Classification of histopathological breast cancer images using iterative VMD aided zernike moments & textural signatures. CoRR abs/1801.04880. http://arxiv.org/abs/1801.04880

  6. Dimitropoulos K, Barmpoutis P, Zioga C, Kamas A, Patsiaoura K, Grammalidis N (2017) Grading of invasive breast carcinoma through grassmannian vlad encoding. PLOS One 12(9):1–18. https://doi.org/10.1371/journal.pone.0185110

  7. Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H (2018) Synthetic data augmentation using GAN for improved liver lesion classification. CoRR abs/1801.02385. http://arxiv.org/abs/1801.02385

  8. Gadelha M, Maji S, Wang R (2016) 3d shape induction from 2d views of multiple objects. CoRR abs/1612.05872. http://arxiv.org/abs/1612.05872

  9. Gauthier J (2015) Conditional generative adversarial nets for convolutional face generation

    Google Scholar 

  10. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Proceedings of the 27th international conference on neural information processing systems, NIPS 2014, vol 2. MIT Press, Cambridge, MA, USA, pp 2672–2680. http://dl.acm.org/citation.cfm?id=2969033.2969125

  11. Gupta V, Bhavsar A (June 2018) Sequential modeling of deep features for breast cancer histopathological image classification. In: The IEEE conference on computer vision and pattern recognition (CVPR) workshops

    Google Scholar 

  12. Habibzadeh Motlagh N, Jannesary M, Aboulkheyr H, Khosravi P, Elemento O, Totonchi M, Hajirasouliha I (2018) Breast cancer histopathological image classification: a deep learning approach. https://www.biorxiv.org/content/early/2018/01/04/242818

  13. Jin Y, Zhang J, Li M, Tian Y, Zhu H, Fang Z (2017) Towards the automatic anime characters creation with generative adversarial networks. CoRR abs/1708.05509. http://arxiv.org/abs/1708.05509

  14. Kårsnäs A (2014) Image analysis methods and tools for digital histopathology applications relevant to breast cancer diagnosis. PhD thesis, Uppsala University, Division of visual information and interaction, computerized image analysis and human-computer interaction

    Google Scholar 

  15. Kohli MD, Summers RM, Geis JR (2017) Medical image data and datasets in the era of machine learning whitepaper from the 2016 C-MIMI meeting dataset session. J Digit Imaging

    Google Scholar 

  16. Li Y, Liu S, Yang J, Yang M (2017) Generative face completion. CoRR abs/1704.05838. http://arxiv.org/abs/1704.05838

  17. Ma L, Jia X, Sun Q, Schiele B, Tuytelaars T, Gool LV (2017) Pose guided person image generation. CoRR abs/1705.09368. http://arxiv.org/abs/1705.09368

  18. Myung Jae L, Da Eun K, Dong Kun C, Hong L, Young Man K (2018) Deep convolution neural networks for medical image analysis. Int J Eng Technol 7(3.33). https://doi.org/10.14419/ijet.v7i3.33.18588

  19. Nahid A, Kong Y (2018) Histopathological breast-image classification using local and frequency domains by convolutional neural network. Information 9:19. https://doi.org/10.3390/info9010019

  20. Nawaz M, Sewissy AA, Soliman THA (2018) Multi-class breast cancer classification using deep learning convolutional neural network. Int J Adv Comput Sci Appl 9(6):316–332. https://doi.org/10.14569/IJACSA.2018.090645

    Article  Google Scholar 

  21. Nazeri K, Aminpour A, Ebrahimi M (2018) Two-stage convolutional neural network for breast cancer histology image classification. CoRR abs/1803.04054. http://arxiv.org/abs/1803.04054

  22. Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. CoRR abs/1712.04621. http://arxiv.org/abs/1712.04621

  23. Spanhol FA, Oliveira LS, Petitjean C, Heutte L (July 2016) Breast cancer histopathological image classification using convolutional neural networks. In: 2016 international joint conference on neural networks (IJCNN), pp 2560–2567. https://doi.org/10.1109/IJCNN.2016.7727519

  24. Spanhol FA, de Oliveira LES, Petitjean C, Heutte L (2016) A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 63:1455–1462

    Article  Google Scholar 

  25. Wu J, Zhang C, Xue T, Freeman WT, Tenenbaum JB (2016) Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. CoRR abs/1610.07584. http://arxiv.org/abs/1610.07584

  26. Yang L, Chou S, Yang Y (2017) Midinet: a convolutional generative adversarial network for symbolic-domain music generation using 1d and 2d conditions. CoRR abs/1703.10847. http://arxiv.org/abs/1703.10847

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weng San Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, W.S., Amer, M., Maul, T., Liao, I.Y., Ahmed, A. (2020). Conditional Generative Adversarial Networks for Data Augmentation in Breast Cancer Classification. In: Ghazali, R., Nawi, N., Deris, M., Abawajy, J. (eds) Recent Advances on Soft Computing and Data Mining. SCDM 2020. Advances in Intelligent Systems and Computing, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-030-36056-6_37

Download citation

Publish with us

Policies and ethics