Skip to main content

Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis

  • Chapter
  • First Online:
Plant Microbe Symbiosis

Abstract

Arbuscular mycorrhiza is an evolutionary symbiotic association between roots of terrestrial plants and fungi of phylum Glomeromycota. The development of this association resulted from the exchange of signaling molecules between the two partners, which leads to reciprocal benefits. Different stages of symbiosis are regulated by various plant hormones, different genes and miRNAs. While plant-derived strigolactone hormones stimulate the fungal hyphal branching and its metabolism, fungi releases lipochitooligosaccharides (Myc-Lcos) which elicit pre-symbiotic responses in the host root. These signaling molecules develop a molecular dialogue between AM fungi and plant roots, which generates a cascade of co-evolutionary events leading to the preparation of both the partners for successive root colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP (2007) The molecular architecture of the nuclear pore complex. Nature 450:695–701

    Article  CAS  PubMed  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, New York

    Google Scholar 

  • Ayling SM, Smith SE, Smith FA (2001) Colonisation by arbuscular mycorrhizal fungi changes the relationship between phosphorus uptake and membrane potential in leek (Allium porrum) seedlings. Aust J Plant Physiol 28:391–399

    CAS  Google Scholar 

  • Bainard LD, Klironomos JN, Gordon AM (2011) Arbuscular mycorrhizal fungi in tree-based intercropping systems: a review of their abundance and diversity. Pedobiologia 54:57–61

    Article  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509–524

    Article  CAS  PubMed  Google Scholar 

  • Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF (2013) High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci 4:426

    Article  PubMed  PubMed Central  Google Scholar 

  • Berta G, Fusconi A, Sampo S, Lingua G, Perticone S, Repetto O (2000) Polyploidy in tomato roots as affected by arbuscular mycorrhizal colonization. Plant Soil 226:37–44

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498

    Article  CAS  PubMed  Google Scholar 

  • Brewin N (1998) Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes. In: Spaink H, Kondorosi A, Hooykaas P (eds) The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp 417–429

    Chapter  Google Scholar 

  • Bucher M (2010) A novel lipid signal in the arbuscular mycorrhizal symbiosis within eyesight? New Phytol 185:593–595

    Article  CAS  PubMed  Google Scholar 

  • Bucher M, Wegmuller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507

    Article  CAS  PubMed  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant-Microbe Interact 13:693–698

    Article  CAS  PubMed  Google Scholar 

  • Catoira R, Galera C, De Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazares E, Smith JE (1996) Occurrence of vesicular–arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon Coast Range soils. Mycorrhiza 6:65–67

    Google Scholar 

  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189:347–355

    Article  CAS  PubMed  Google Scholar 

  • Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E, Parniske M (2008) Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20:3467–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaux P-M, Bécard G, Combier J-P (2013) NSP1 is a component of the Myc signaling pathway. New Phytol 199:59–65

    Article  CAS  PubMed  Google Scholar 

  • Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9:205–213

    Article  Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural difference in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17(5):375–393

    Article  CAS  PubMed  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  PubMed  Google Scholar 

  • Ercolin F, Reinhardt D (2011) Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends Plant Sci 16:356–362

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243

    Article  Google Scholar 

  • Flo DS, Hause B, Lange PR, Küster H, Strack D, Walter MH (2008) Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56:86–100

    Article  CAS  Google Scholar 

  • Fournier J, Timmers ACJ, Sieberer BJ, Jauneau A, Chabaud M, Barker DG (2008) Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. Plant Physiol 148:1985–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank B (1885) Ueber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145

    Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P (2009) Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol 149:1424–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613

    Article  CAS  PubMed  Google Scholar 

  • Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah BW, Oldroyd GE (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking auto inhibition. Nature 441:1149–1152

    Article  CAS  PubMed  Google Scholar 

  • Gobbato E (2015) Recent developments in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 26:1–7

    Article  PubMed  Google Scholar 

  • Gobbato E, Marsh J, Vernié T, Wang E, Maillet F et al (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241

    Article  CAS  PubMed  Google Scholar 

  • Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal fungi: what we know and what should we know? In: Varma A (ed) Mycorrhiza, 3rd edn. Springer-Verlag, Berlin, pp 3–27

    Chapter  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435(7043):819–823

    Article  CAS  PubMed  Google Scholar 

  • Guillotin B, Etemadi M, Audran C, Bouzayen M, Becard G, Combier JP (2016) Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom). New Phytol 213:1124–1132

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920

    Article  CAS  PubMed  Google Scholar 

  • Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM et al (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036

    Article  CAS  PubMed  Google Scholar 

  • Harris JM, Wais R, Long SR (2003) Rhizobium induced calcium spiking in Lotus japonicus. Mol Plant-Microbe Interact 16:335–341

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Medina M, Steinkellner S, Vierheilig H, Ocampo Bote J, Garcia Garrido J (2007) Absicic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Zhang N et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hohnjec N, Czaja-Hasse LF, Hogekamp C, Kuster H (2015) Preannouncement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1. BMC Genomics 16:994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath B, Yeun LH, Domonkos A, Halasz G, Gobbato E, Ayaydin F, Miro K, Hirsch S, Sun J, Tadege M (2011) Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant-Microbe Interact 24:1345–1358

    Article  CAS  PubMed  Google Scholar 

  • Ianson D (2015) Mycorrhizae in the Alaska Landscape by, Mycorrhizast and Jeff Smeenk, Extension Horticulture Specialist. University of Alaska Fairbanks Cooperative Extension Service in cooperation with the United States Department of Agriculture Heidi Rader, Tribes Extension Educator 1-877-520-5211: 1–7

    Google Scholar 

  • IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu G-J, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Pumplin N, Harrison M (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  PubMed  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518

    Article  CAS  PubMed  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S et al (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, Fujiwara T (2016) Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiol 171:566–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R, Fujiwara T, Kyozuka J (2017) Strigolactone biosynthesis genes of rice are required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiol 59:544–553

    Article  CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M et al (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344

    Article  CAS  PubMed  Google Scholar 

  • Lauressergues D, Delaux P-M, Formey D, Lelandais-Brière C, Fort S et al (2012) ThemicroRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72:512–522

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lusk CP, Blobel G, King MC (2007) Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 8:414–420

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6(3):e68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. https://doi.org/10.1016/C2009-0-63043-9

    Book  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  CAS  PubMed  Google Scholar 

  • Miwa H, Sun J, Oldroyd GE, Downie JA (2006) Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant-Microbe Interact 19:914–923

    Article  CAS  PubMed  Google Scholar 

  • Miyasaka SC, Habte M, Friday JB, Johnson EV (2003) Manual on arbuscular mycorrhizal fungus production and inoculation techniques. Soil Crop Manag 5:1–4

    Google Scholar 

  • Mohanta TK, Bae H (2014) Functional genomics and signaling events in mycorrhizal symbiosis. J Plant Interact 10:21–40

    Article  CAS  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (zygomycetes): a new order, glomales, two new suborders, glomineae and gigasporineae, and two new families, acaulorporaceae and gigasporaceae with an amendation of glomaceae. Mycotaron 37:471–491

    Google Scholar 

  • Mukherjee A, Ane J-M (2010) Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant-Microbe Interact 24:260–270

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds DD (1997) Appressorium formation by AM fungi on isolated cell walls of carrot roots. New Phytol 136:299–304

    Article  Google Scholar 

  • Nagahashi G, Douds DD Jr (2011) The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol 115:351–358

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Imaizumi-Anraku H (2015) Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice 8:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  PubMed  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357

    Article  CAS  PubMed  Google Scholar 

  • Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R (2011) LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331:909–912

    Article  CAS  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7:414–421

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Cham, pp 1–7

    Google Scholar 

  • Reddy SDMR, Svistoonoff S, Breuillin F, Wegmüller S, Bucher M, Reinhardt D (2008) Development and function of the arbuscular mycorrhizal symbiosis in Petunia. In: Gerats T, Strommer J (eds) Petunia: evolutionary, developmental and physiological genetics. Springer-Verlag, Cham, pp 131–156

    Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Requena N, Mann P, Franken P (2000) A homologue of the cell cycle check point TOR2 from Saccharomyces cerevisiae exists in the arbuscular mycorrrhizal fungus Glomus mosseae. Protoplasma 212:89–98

    Article  CAS  Google Scholar 

  • Requena N, Serrano E, Ocon A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhizal establishment. Phytochemistry 68:33–40

    Article  CAS  PubMed  Google Scholar 

  • Sasse J, Simon S, Gubeli C, Liu GW, Cheng X, Friml J, Bouwmeester H, Martinoia E, Borghi L (2015) Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr Biol 25:647–655

    Article  CAS  PubMed  Google Scholar 

  • Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJGM, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol 144:1455–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieberer BJ, Chabaud M, Fournier J, Timmers ACJ, Barker DG (2012) A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula. Plant J 69:822–830

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Katzer K, Lambert J, Cerri M, Parniske M (2014) CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15:139–152

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York, NY

    Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E, Maillet F, Cottaz S, Samain E, Venkateshwaran M, Fort S, Morris RJ, Ane JM, Denarie J, Oldroyd GE (2015) Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27:823–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, Dazzo FB, de Bruijn FJ (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant-Microbe Interact 11:684–697

    Article  CAS  Google Scholar 

  • Takeda N, Maekawa T, Hayashi M (2012) Nuclear-localized and deregulated calcium- and calmodulin-dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus. Plant Cell 24:810–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M (2013) CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol 54:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J (2006) Deregulation of a Ca2+/calmodulin dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156

    Article  CAS  PubMed  Google Scholar 

  • Vallino M, Fiorilli V, Bonfante P (2014) Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell Environ 37(3):557–572

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Prasad R, Tuteja N (2017) Mycorrhiza: eco-physiology, secondary metabolites, nanomaterials. Springer, Cham. ISBN 978-3-319-57849-1. http://www.springer.com/us/book/9783319578484

    Book  Google Scholar 

  • Venkateshwaran M, Cosme A, Han L, Banba M, Satyshur KA, Schleiff E, Parniske M, Imaizumi-Anraku H, Ané J-M (2012) The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling. Plant Cell 24:2528–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker S, Viprey V, Downie J (2000) Dissection of nodulation signalling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc Natl Acad Sci USA 97:13413–13418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B (2012) A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22:2242–2246

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Cui H, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA 105:20540–20545

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoneyama K, Xie X, Kim H, Kisugi T, Nomura T et al (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dong W, Sun J, Feng F, Deng Y, He Z, Oldroyd GE, Wang E (2015) The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81:258–267

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Wang T, Wang M, Liu Y, Yuan S, Gao Y, Yin L, Sun W, Peng L, Zhang W, Wan J, Li X (2014) DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol 55:1096–1109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We sincerely thank Mr. Manu Phogat for preparing the figures used in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhanker, R., Chaudhary, S., Kumari, A., Kumar, R., Goyal, S. (2020). Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Symbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-36248-5_5

Download citation

Publish with us

Policies and ethics