Skip to main content

Matching Node Embeddings Using Valid Assignment Kernels

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

  • 3127 Accesses

Abstract

Graph kernels have proven to be a promising approach for tackling the graph similarity and learning tasks at the same time. Most graph kernels are instances of the R-convolution framework. These kernels decompose graphs into their substructures and sum over all pairs of these substructures. A more promising family of kernels are the assignment kernels, which compute a matching between substructures of two objects such that the total similarity between the matched substructures is maximum. In this paper, we present a kernel which compares graphs by computing an assignment of their node embeddings. After embedding the vertices of all graphs in a vector space, we construct a hierarchy of the vertices using a clustering algorithm. Based on this hierarchy, we define a kernel that computes an optimal assignment of the vertices of two graphs. The proposed kernel is evaluated on several graph classification datasets. Our results indicate that the proposed approach is competitive with traditional and state-of-the-art techniques.

C. Wu is supported by the project “ESIGMA” (ANR-17-CE40-0028).

G. Nikolentzos is supported by the project “ESIGMA” (ANR-17-CE40-0028).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The datasets are available at https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets.

  2. 2.

    Code available at https://github.com/ChangminWu/assignment-kernel-embeddings.

References

  1. Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: Proceedings of the 2003 International Conference on Image Processing, vol. 3, pp. III–513–16 (2003)

    Google Scholar 

  2. Borgwardt, K.M., Kriegel, H.: Shortest-path kernels on graphs. In: Proceedings of the 5th International Conference on Data Mining, pp. 74–81 (2005)

    Google Scholar 

  3. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  4. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42(1), 143–175 (2001)

    Article  Google Scholar 

  5. Donnat, C., Zitnik, M., Hallac, D., Leskovec, J.: Learning structural node embeddings via diffusion wavelets. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1320–1329. ACM (2018)

    Google Scholar 

  6. Fröhlich, H., Wegner, J.K., Sieker, F., Zell, A.: Optimal assignment kernels for attributed molecular graphs. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 225–232 (2005)

    Google Scholar 

  7. Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of android malware using embedded call graphs. In: Proceedings of the 2013 Workshop on Artificial intelligence and Security, pp. 45–54 (2013)

    Google Scholar 

  8. Haussler, D.: Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz (1999)

    Google Scholar 

  9. Kondor, R., Son, H.T., Pan, H., Anderson, B., Trivedi, S.: Covariant Compositional Networks For Learning Graphs. arXiv preprint arXiv:1801.02144 (2018)

  10. Kriege, N.M., Giscard, P.L., Wilson, R.: On valid optimal assignment kernels and applications to graph classification. In: Advances in Neural Information Processing Systems, pp. 1623–1631 (2016)

    Google Scholar 

  11. Lee, J.B., Rossi, R., Kong, X.: Graph classification using structural attention. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1666–1674. ACM (2018)

    Google Scholar 

  12. Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G., Grohe, M.: Weisfeiler and leman go neural: higher-order graph neural networks. arXiv preprint arXiv:1810.02244 (2018)

  13. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for graph similarity. In: Proceedings of the 31st AAAI Conference in Artificial Intelligence, pp. 1891–1901 (2017)

    Google Scholar 

  14. Nikolentzos, G., Meladianos, P., Rousseau, F., Stavrakas, Y., Vazirgiannis, M.: Shortest-path graph kernels for document similarity. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1890–1900 (2017)

    Google Scholar 

  15. Nikolentzos, G., Siglidis, G., Vazirgiannis, M.: Graph Kernels: A Survey. arXiv preprint arXiv:1904.12218 (2019)

  16. Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: Proceedings of the 1st International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74 (2003)

    Google Scholar 

  17. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: Struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining, pp. 385–394 (2017)

    Google Scholar 

  18. Schölkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology. MIT Press, Cambridge (2004)

    Book  Google Scholar 

  19. Shervashidze, N., Petri, T., Mehlhorn, K., Borgwardt, K.M., Vishwanathan, S.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, pp. 488–495 (2009)

    Google Scholar 

  20. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)

    Article  Google Scholar 

  22. Vert, J.P.: The optimal assignment kernel is not positive definite. arXiv preprint arXiv:0801.4061 (2008)

  23. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)

    Google Scholar 

  24. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: Proceedings of the 32nd AAAI Conference in Artificial Intelligence (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michalis Vazirgiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, C., Nikolentzos, G., Vazirgiannis, M. (2020). Matching Node Embeddings Using Valid Assignment Kernels. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_67

Download citation

Publish with us

Policies and ethics