Skip to main content

Deep Reinforcement Learning for Task-Driven Discovery of Incomplete Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

Abstract

Complex networks are often either too large for full exploration, partially accessible, or partially observed. Downstream learning tasks on these incomplete networks can produce low quality results. In addition, reducing the incompleteness of the network can be costly and nontrivial. As a result, network discovery algorithms optimized for specific downstream learning tasks given resource collection constraints are of great interest. In this paper, we formulate the task-specific network discovery problem in an incomplete network setting as a sequential decision making problem. Our downstream task is selective harvesting, the optimal collection of vertices with a particular attribute. We propose a framework, called Network Actor Critic (NAC), which learns a policy and notion of future reward in an offline setting via a deep reinforcement learning algorithm. A quantitative study is presented on several synthetic and real benchmarks. We show that offline models of reward and network discovery policies lead to significantly improved performance when compared to competitive online discovery algorithms.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  2. Heess, N., Dhruva, T.B., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Ali Eslami, S.M., Riedmiller, M.A., Silver, D.: Emergence of locomotion behaviours in rich environments. CoRR, abs/1707.02286 (2017)

    Google Scholar 

  3. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017)

    Article  Google Scholar 

  4. Wang, X., Garnett, R., Schneider, J.: Active search on graphs. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2013)

    Google Scholar 

  5. LaRock, T., Sakharov, T., Bhadra, S., Eliassi-Rad, T.: Reducing network incompleteness through online learning: a feasibility study. In: The 14th International Workshop on Mining and Learning with Graphs (2018)

    Google Scholar 

  6. Soundarajan, S., Eliassi-Rad, T., Gallagher, B., Pinar, A.: MaxOutProbe: an algorithm for increasing the size of partially observed networks. CoRR, abs/1511.06463 (2015)

    Google Scholar 

  7. Soundarajan, S., Eliassi-Rad, T., Gallagher, B., Pinar, A.: MaxReach: reducing network incompleteness through node probes. In: ASONAM, pp 152–157 (2016)

    Google Scholar 

  8. Avrachenkov, K., Basu, P., Neglia, G., Ribeiro, B., Towsley, D.: Pay few, influence most: online myopic network covering. In: IEEE Conference on Computer Communications Workshops, pp. 813–818 (2014)

    Google Scholar 

  9. Murai, F., Rennó, D., Ribeiro, B., Pappa, G.L., Towsley, D.F., Gile, K.: Selective harvesting over networks. Data Min. Knowl. Discov. 32(1), 187–217 (2017)

    Article  MathSciNet  Google Scholar 

  10. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. CoRR, abs/1812.04202 (2018)

    Google Scholar 

  11. You, J., Liu, B., Ying, R., Pande, V., Leskovec, J.: Graph convolutional policy network for goal-directed molecular graph generation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 6412–6422 (2018)

    Google Scholar 

  12. Mofrad, M.H., Melhem, R., Hammoud, M.: Partitioning graphs for the cloud using reinforcement learning. CoRR, abs/1907.06768 (2019)

    Google Scholar 

  13. De Cao, N., Kipf, T.: MolGAN: an implicit generative model for small molecular graphs, CoRR, abs/1805.11973 (2018)

    Google Scholar 

  14. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6351–6361 (2017)

    Google Scholar 

  15. Ho, C., Kochenderfer, M.J., Mehta, V., Caceres, R.S.: Control of epidemics on graphs. In: 54th IEEE Conference on Decision and Control, pp. 4202–4207 (2015)

    Google Scholar 

  16. Goindani, M., Neville, J.: Social reinforcement learning to combat fake news spread. In: Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence (2019)

    Google Scholar 

  17. Mittal, A., Dhawan, A., Medya, S., Ranu, S., Singh, A.K.: Learning heuristics over large graphs via deep reinforcement learning. CoRR, abs/1903.03332 (2019)

    Google Scholar 

  18. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

    Article  Google Scholar 

  19. Kloumann, I.M., Ugander, J., Kleinberg, J.: Block models and personalized PageRank. Proc. Natl. Acad. Sci. 114(1), 33–38 (2017)

    Article  Google Scholar 

  20. Gleich, D.: PageRank beyond the web. SIAM Rev. 57 (2014). https://doi.org/10.1137/140976649

    Article  MathSciNet  Google Scholar 

  21. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008)

    Article  Google Scholar 

  22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR, abs/1707.06347 (2017)

    Google Scholar 

  23. Nadakuditi, R.R., Newman, M.E.J.: Graph spectra and the detectability of community structure in networks. CoRR, abs/1205.1813 (2012)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)

    Google Scholar 

  25. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  26. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  27. Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.A.: GEMSEC: graph embedding with self clustering. CoRR, abs/1802.03997 (2018)

    Google Scholar 

  28. Avrachenkov, K., Borkar, V.S., Kadavankandy, A., Sreedharan, J.K.: Comparison of random walk based techniques for estimating network averages. In: International Conference on Computational Social Networks, pp. 27–38 (2016)

    Chapter  Google Scholar 

  29. Avrachenkov, K., Borkar, V.S.,Kadavankandy, A., Sreedharan, J.K.: Revisiting random walk based sampling in networks: evasion of burn-in period and frequent regenerations. Comput. Soc. Netw. (2018)

    Google Scholar 

  30. Avrachenkov, K., Litvak, N., Nemirovsky, D., Smirnova, E., Sokol, M.: Quick detection of top-k personalized pagerank lists. In: International Workshop on Algorithms and Models for The Web-Graph, pp. 50–61 (2011)

    Google Scholar 

  31. Borkar, V.S., Mathkar, A.S.: Reinforcement learning for matrix computations: pagerank as an example. In: International Conference on Distributed Computing and Internet Technology, pp. 14–24 (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morales, P., Caceres, R.S., Eliassi-Rad, T. (2020). Deep Reinforcement Learning for Task-Driven Discovery of Incomplete Networks. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_75

Download citation

Publish with us

Policies and ethics