Skip to main content

Variability, Behaviour and Impact of Nanoparticles in the Environment

  • Chapter
  • First Online:
Plant Responses to Nanomaterials

Abstract

Nanotechnology has been a current area of interest for many researchers due to its immense potential and economic impact. It involves the production and application of nanomaterials (NMs) in the field of food, industries, technology and health. These NMs include nanoparticles (NPs), which have gained a lot of attention in the last few decades due to their unique properties and behaviour. But when these NPs enter the environment, they produce many harmful effects on living organisms. The sources, properties, behaviour and the negative impact of these NPs are reviewed in this chapter to control the negative effects of these NPs on the human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksakal FI, Ciltas A (2019) Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 223:78

    Article  CAS  PubMed  Google Scholar 

  • Champion J, Katare Y, Mitragotri S (2008) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9

    Google Scholar 

  • Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409(12):2443–2450

    Article  CAS  PubMed  Google Scholar 

  • Cong Y, Jin F, Wang J, Mu J (2017) The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Aquat Toxicol 185:11–18

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74(4):569–575

    Google Scholar 

  • Caballero-Guzman A, Nowack B (2016) A critical review of engineered nanomaterial release data: are current data useful for material flow modeling?. Environ Pollut 213:502–517

    Google Scholar 

  • Dale AL, Lowry GV, Casman EA (2015) Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model. Environ Sci Technol 49(12):7285–7293

    Article  CAS  PubMed  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    Article  CAS  PubMed  Google Scholar 

  • Ferreira P, Fonte E, Soares ME, Carvalho F, Guilhermino L (2016) Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: gold nanoparticles, microplastics and temperature. Aquat Toxicol 170:89–103

    Article  CAS  PubMed  Google Scholar 

  • Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere 86(8):802–808

    Google Scholar 

  • Goodwin DG Jr, Adeleye AS, Sung L, Ho KT, Burgess RM, Petersen EJ (2018) Detection and quantification of graphene-family nanomaterials in the environment. Environ Sci Technol 52(8):4491–4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  CAS  PubMed  Google Scholar 

  • Grillet N, Manchon D, Cottancin E, Bertorelle F, Bonnet C, Broyer M, Lermé J, Pellarin M (2013) Photo-oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes. J Phys Chem C 117(5):2274–2282

    Article  CAS  Google Scholar 

  • Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:013001. (25pp)

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45(4):1659–1664

    Google Scholar 

  • Handy RD, Von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17(4):287–314

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24:45–55

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Cheng J, Yi J (2016) Impact of silver nanoparticles on marine diatom Skeletonema costatum. J Appl Toxicol 36(10):1343–1354

    Article  CAS  PubMed  Google Scholar 

  • Jafar G, Hamzeh G (2013) Ecotoxicity of nanomaterials in soil. Ann Biol Res 4(1):86–92

    Google Scholar 

  • Jain S, Hirst DG, Osullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Kim B, Rutka J, Chan W (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Aiken GR, Hsu-Kim H (2015) Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles. Environ Sci Technol 49(19):11476–11484

    Article  CAS  PubMed  Google Scholar 

  • Johnson AC, Jürgens MD, Lawlor AJ, Cisowska I, Williams RJ (2014) Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants. Chemosphere 112:49–55

    Article  CAS  PubMed  Google Scholar 

  • John A, Küpper M, Manders-Groot A, Debray B, Lacome JM, Kuhlbusch T (2017) Emissions and possible environmental implication of engineered nanomaterials (ENMs) in the atmosphere. Atmosphere 8(5):84

    Google Scholar 

  • Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76(9):1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44(14):4105–4114

    Article  CAS  PubMed  Google Scholar 

  • Kroeze C, Gabbert S, Hofstra N, Koelmans AA, Li A, Löhr A, Ludwig F, Strokal M, Verburg C, Vermeulen L, van Vliet MT (2016) Global modelling of surface water quality: a multi-pollutant approach. Curr Opin Environ Sustain 23:35–45

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem: An International Journal 27(9):1825–1851

    Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Lofts S, Dumont E, Keller V, Williams R, Praetorius A, von der Kammer F, Cornelis G, Loureiro S, van den Brink N (2016) A multimedia model for nanoparticle fate and biotic update in the environment. In: Interdisciplinary approaches to health and the environment, 26th annual ISES meeting 2016

    Google Scholar 

  • Maiti S, Barman G, Laha JK (2016) Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl Nanosci 6(4):529–538

    Article  CAS  Google Scholar 

  • Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147

    Article  CAS  PubMed  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165

    Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  PubMed  Google Scholar 

  • Niemuth NJ, Curtis BJ, Hang MN, Gallagher MJ, Fairbrother DH, Hamers RJ, Klaper RD (2019) Next-generation complex metal oxide nanomaterials negatively impact growth and development in the benthic invertebrate Chironomus riparius upon. Environ Sci Technol 53(7):3860–3870

    Article  CAS  PubMed  Google Scholar 

  • Nowack B (2009) The behavior and effects of nanoparticles in the environment. Environ Pollut 157:1063–1064

    Article  CAS  PubMed  Google Scholar 

  • Nowack B (2017) Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. NanoImpact 8:38–47

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59

    Article  CAS  PubMed  Google Scholar 

  • Okupnik A, Pflugmacher S (2016) Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environ Toxicol Chem 35(11):2859–2866

    Article  CAS  PubMed  Google Scholar 

  • Peijnenburg WJ, Baalousha M, Chen J, Chaudry Q, Von der Kammer F, Kuhlbusch TA, Lead J, Nickel C, Quik JT, Renker M, Wang Z (2015) A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol 45(19):2084–2134

    Article  CAS  Google Scholar 

  • Peng C, Zhang W, Gao H, Li Y, Tong X, Li K et al (2017) Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nano 7(1):21

    Google Scholar 

  • Phogat N, Khan SA, Shankar S, Ansary AA, Uddin I (2016) Fate of inorganic nanoparticles in agriculture. Adv Mater Lett 7(1):3–12

    Article  CAS  Google Scholar 

  • Praetorius A, Tufenkji N, Goss KU, Scheringer M, von der Kammer F, Elimelech M (2014) The road to nowhere: equilibrium partition coefficients for nanoparticles. Environ Sci Nano 1(4):317–323

    Article  CAS  Google Scholar 

  • Praetorius A, Gundlach-Graham A, Goldberg E, Fabienke W, Navratilova J, Gondikas A, Kaegi R, Günther D, Hofmann T, von der Kammer F (2017) Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ Sci Nano 4(2):307–314

    Article  CAS  Google Scholar 

  • Pedata P, Bergamasco N, D’Anna A, Minutolo P, Servillo L, Sannolo N, Balestrieri ML (2013) Apoptotic and proinflammatory effect of combustion-generated organic nanoparticles in endothelial cells. Toxicol Lett 219(3):307–314

    Google Scholar 

  • Quik JT, Lynch I, Van Hoecke K, Miermans CJ, De Schamphelaere KA, Janssen CR, Dawson KA, Stuart MAC, Van De Meent D (2010) Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81(6):711–715

    Article  CAS  PubMed  Google Scholar 

  • Reed RB, Martin DP, Bednar AJ, Montaño MD, Westerhoff P, Ranville JF (2017) Multi-day diurnal measurements of Ti-containing nanoparticle and organic sunscreen chemical release during recreational use of a natural surface water. Environ Sci Nano 4(1):69–77

    Article  CAS  Google Scholar 

  • Rogers F, Arnott P, Zielinska B, Sagebiel J, Kelly KE, Wagner D, Lighty JS, Sarofim AF (2005) Real time measurements of jet aircraft engine exhaust. J Air Waste Manag Assoc 55:583–593

    Article  CAS  PubMed  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava M, Srivastava A, Gandhi S, Roychoudhury A, Kumar A, Singhal RK, Jha SK, Singh SD (2019) Monitoring of engineered nanoparticles in soil-plant system: a review. Environ Nanotechnol Monit Manag 11:100218

    Google Scholar 

  • Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(1):S13

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723

    Google Scholar 

  • Soni D, Naoghare PK, Saravanadevi S, Pandey RA (2015) Release, transport and toxicity of engineered nanoparticles. In Reviews of environmental contamination and toxicology (pp. 1–47). Springer, Cham

    Google Scholar 

  • Savabieasfahani M, Alaani S, Tafash M, Dastgiri S, Al-Sabbak M (2015) Elevated titanium levels in Iraqi children with neurodevelopmental disorders echo findings in occupation soldiers. Environ Monit Assess 187(1):4127

    Google Scholar 

  • Tarrahi R, Khataee A, Movafeghi A, Rezanejad F (2018) Toxicity of ZnSe nanoparticles to Lemna minor: evaluation of biological responses. J Environ Manag 226:298–307

    Article  CAS  Google Scholar 

  • Tarrahi R, Movafeghi A, Khataee A, Rezanejad F, Gohari G (2019) Evaluating the toxic impacts of cadmium selenide nanoparticles on the aquatic plant Lemna minor. Molecules 24(3):410

    Article  PubMed Central  CAS  Google Scholar 

  • Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R (2014) Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol 48(9):4885–4892

    Article  CAS  PubMed  Google Scholar 

  • Trindade T, O’Brien P, Pickett N (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858

    Article  CAS  Google Scholar 

  • Truong N, Whittaker M, Mak C, Davis T (2014) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12(1):1–14

    Google Scholar 

  • Tourinho PS, Van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692

    Google Scholar 

  • Taha MR, Taha OM (2012) Influence of nano-material on the expansive and shrinkage soil behavior. J Nanopart Res 14(10):1190

    Google Scholar 

  • Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ (2013) Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ Pollut 173:38–46

    Google Scholar 

  • Turkevich LA, Dastidar AG, Hachmeister Z, Lim M (2015) Potential explosion hazard of carbonaceous nanoparticles: Explosion parameters of selected materials. J Hazard Mater 295:97–103

    Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Harrison S, Keller V, Kuenen J, Lofts S, Praetorius A, Svendsen C, Vermeulen LC, van Wijnen J (2019) Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Curr Opin Environ Sustain 36:105–115

    Article  Google Scholar 

  • Yamindago A, Lee N, Woo S, Choi H, Mun JY, Jang SW et al (2018) Acute toxic effects of zinc oxide nanoparticles on Hydra magnipapillata. Aquat Toxicol 205:130–139

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816–822

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kour, J. et al. (2021). Variability, Behaviour and Impact of Nanoparticles in the Environment. In: Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Chauhan, D.K. (eds) Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-36740-4_13

Download citation

Publish with us

Policies and ethics