Skip to main content

Regularizing Variational Autoencoders for Molecular Graph Generation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1143))

Included in the following conference series:

  • 2274 Accesses

Abstract

Deep generative models for graphs are promising for being able to sidestep expensive search procedures in the huge space of chemical compounds. However, incorporating complex and non-differentiable property metrics into a generative model remains a challenge. In this work, we formulate a differentiable objective to regularize a variational autoencoder model that we design for graphs. Experiments demonstrate that the regularization performs excellently when used for generating molecules since it can not only improve the performance of objectives optimization task but also generate molecules with high quality in terms of validity and novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The prior is a standard normal in this paper.

  2. 2.

    SAS = fragmentScore − complexityPenalty.

  3. 3.

    Available at https://github.com/nicola-decao/MolGAN.

References

  1. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoencoder for structured data. In: 6th International Conference on Learning Representations, Conference Track Proceedings, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. OpenReview.net (2018). https://openreview.net/forum?id=SyqShMZRb

  2. De Cao, N., Kipf, T.: MolGAN: an implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018)

  3. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015, pp. 2224–2232 (2015). http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints

  4. Ertl, P., Schuffenhauer, A.: Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminformatics 1, 8 (2009). https://doi.org/10.1186/1758-2946-1-8

    Article  Google Scholar 

  5. Ghose, A.K., Crippen, G.M.: Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci. 27(1), 21–35 (1987)

    Article  Google Scholar 

  6. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Precup and Teh [17], pp. 1263–1272. http://proceedings.mlr.press/v70/

  7. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. CoRR abs/1610.02415 (2016). http://arxiv.org/abs/1610.02415

  8. Guimaraes, G.L., Sanchez-Lengeling, B., Farias, P.L.C., Aspuru-Guzik, A.: Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. CoRR abs/1705.10843 (2017). http://arxiv.org/abs/1705.10843

  9. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52(7), 1757–1768 (2012)

    Article  Google Scholar 

  10. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. arXiv preprint arXiv:1802.04364 (2018)

  11. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, Conference Track Proceedings, ICLR 2014, Banff, AB, Canada, 14–16 April 2014 (2014). http://arxiv.org/abs/1312.6114

  12. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: Precup and Teh [17], pp. 1945–1954. http://proceedings.mlr.press/v70/kusner17a.html

  13. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, Conference Track Proceedings, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016 (2016). https://iclr.cc/archive/www/doku.php%3Fid=iclr2016:accepted-main.html

  14. Liu, Q., Allamanis, M., Brockschmidt, M., Gaunt, A.: Constrained graph variational autoencoders for molecule design. In: Advances in Neural Information Processing Systems, pp. 7795–7804 (2018)

    Google Scholar 

  15. Ma, T., Chen, J., Xiao, C.: Constrained generation of semantically valid graphs via regularizing variational autoencoders. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 7113–7124 (2018). http://papers.nips.cc/paper/7942-constrained-generation-of-semantically-valid-graphs-via-regularizing-variational-autoencoders

  16. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Fürnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning (ICML 2010), Haifa, Israel, 21–24 June 2010, pp. 807–814. Omnipress (2010). https://icml.cc/Conferences/2010/papers/432.pdf

  17. Precup, D., Teh, Y.W. (eds.): Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, Proceedings of Machine Learning Research, vol. 70. PMLR (2017). http://proceedings.mlr.press/v70/

  18. Ramakrishnan, R., Dral, P.O., Rupp, M., Von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)

    Article  Google Scholar 

  19. Ruddigkeit, L., Van Deursen, R., Blum, L.C., Reymond, J.L.: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52(11), 2864–2875 (2012)

    Article  Google Scholar 

  20. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  21. Simonovsky, M., Komodakis, N.: GraphVAE: towards generation of small graphs using variational autoencoders. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 412–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_41

    Chapter  Google Scholar 

  22. Weininger, D.: Smiles, a chemical language and information system 1 introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988). https://doi.org/10.1021/ci00057a005

    Article  Google Scholar 

  23. Wildman, S.A., Crippen, G.M.: Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 39(5), 868–873 (1999). https://doi.org/10.1021/ci990307l

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant 61876003. It is a research achievement of Key Laboratory of Science, Techonology and Standard in Press Industry (Key Laboratory of Intelligent Press Media Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Lyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Lyu, X., Zhang, H., Hu, K., Tang, Z. (2019). Regularizing Variational Autoencoders for Molecular Graph Generation. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-030-36802-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36802-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36801-2

  • Online ISBN: 978-3-030-36802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics