Skip to main content

Thyroid Hormone Treatment in Heart Surgery and Heart Transplantation

  • Chapter
  • First Online:
Thyroid and Heart

Abstract

The development of brain death not only causes major structural injury to the heart, but also leads to major hormonal changes. In particular, there is a rapid reduction in the circulating level of thyroid hormone. This leads to an inability of the body to metabolize aerobically. Anaerobic metabolism results in loss of energy stores in the myocardium, resulting in a deterioration in cardiac function. Replacement therapy with triiodothyronine reverses the situation—aerobic metabolism resumes and cardiac function improves. Our experience in both experimental large animal models and in brain-dead human subjects is summarized.Similar changes occur in patients undergoing heart surgery requiring cardiopulmonary bypass, and also following regional myocardial ischemia, and we suggest that thyroid hormone therapy is also beneficial in these patients. It therefore became our policy to treat both the brain-dead heart donor and the heart recipient with triiodothyronine.Finally, we make a case for thyroid hormone therapy to be considered in patients with severe or critical non-thyroidal illness syndrome (NTIS), and report its beneficial effect in one such patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wicomb W, Cooper DK, Hassoulas J, Rose AG, Barnard CN. Orthotopic transplantation of the baboon heart after 20 to 24 hours’ preservation by continuous hypothermic perfusion with an oxygenated hyperosmolar solution. J Thorac Cardiovasc Surg. 1982;83:133–40.

    Article  CAS  PubMed  Google Scholar 

  2. Wicomb WN, Novitzky D, Cooper DK, Rose AG. Forty-eight hours hypothermic perfusion storage of pig and baboon hearts. J Surg Res. 1986;3:276–84.

    Article  Google Scholar 

  3. Cooper DK, Wicomb WN, Rose AG, Barnard CN. Orthotopic allotransplantation and autotransplantation of the baboon heart following twenty-four hours’ storage by a portable hypothermic perfusion system. Cryobiology. 1983;20:385–94.

    Article  CAS  PubMed  Google Scholar 

  4. Novitzky D, Cooper DKC, Barnard CN. The surgical technique of heterotopic heart transplantation. Ann Thorac Surg. 1983;36:476–82.

    Article  CAS  PubMed  Google Scholar 

  5. Cooper DK, Wicomb WN, Barnard CN. Storage of the donor heart by a portable hypothermic perfusion system: experimental development and clinical experience. J Heart Transplant. 1983;2:104–10.

    Google Scholar 

  6. Wicomb WN, Cooper DK, Novitzky D, Barnard CN. Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. Ann Thorac Surg. 1984;373:243–8.

    Article  Google Scholar 

  7. Wicomb WN, Cooper DKC, Lanza RP, Novitzky D, Isaacs S. The effects of brain death and 24 hours’ storage by hypothermic perfusion on donor heart function in the pig. J Thorac Cardiovasc Surg. 1986;91:896–909.

    Article  CAS  PubMed  Google Scholar 

  8. Novitzky D, Wicomb WN, Cooper DKC, Rose AG, Fraser RC, Barnard CN. Electrocardiographic, haemodynamic and endocrine changes occurring during experimental brain death in the Chacma baboon. J Heart Transplant. 1984;4:63–9.

    Google Scholar 

  9. Cushing H. Some experimental and clinical observations concerning states of increased intracranial tension. Am J Med Sci. 1902;124:373–400.

    Article  Google Scholar 

  10. Cooper DKC, Novitzky D, Wicomb WN. The pathophysiological effects of brain death on potential donor organs, with particular reference to the heart. Ann R Coll Surg Engl. 1989;71:261–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Novitzky D, Rose AG, Cooper DKC, Reichart B. Interpretation of endomyocardial biopsy after heart transplantation. Potentially confusing factors. S Afr Med J. 1986;70:789–92.

    CAS  PubMed  Google Scholar 

  12. Novitzky D, Wicomb WN, Cooper DKC, Rose AG, Reichart B. Prevention of myocardial injury during brain death by total cardiac sympathectomy in the Chacma baboon. Ann Thorac Surg. 1986;41:520–4.

    Article  CAS  PubMed  Google Scholar 

  13. Novitzky D, Wicomb WN, Rose AG, Cooper DKC, Reichart B. Pathophysiology of pulmonary edema following experimental brain death in the chacma baboon. Ann Thorac Surg. 1987;43:288–94.

    Article  CAS  PubMed  Google Scholar 

  14. Novitzky D, Cooper DKC, Rose AG, Reichart B. Prevention of myocardial injury by pretreatment with verapamil hydrochloride prior to experimental brain death: efficacy in a baboon model. Am J Emerg Med. 1987;5:11–8.

    Article  CAS  PubMed  Google Scholar 

  15. Novitzky D, Rose AG, Cooper DKC. Injury of myocardial conduction tissue and coronary artery smooth muscle following brain death in the baboon. Transplantation. 1988;45:964–6.

    Article  CAS  PubMed  Google Scholar 

  16. McClellan G, Weisberg A, Winegrad S. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells. Am J Phys. 1983;245(5 Pt 1):C423–7.

    Article  CAS  Google Scholar 

  17. Novitzky D, Cooper DKC, Morrell D, Isaacs S. Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine (T3) therapy. Transplantation. 1988;45:32–6.

    Article  CAS  PubMed  Google Scholar 

  18. Novitzky D, Cooper DKC, editors. The brain-dead organ donor: pathophysiology and management. New York: Springer; 2013. p. 1–368.

    Book  Google Scholar 

  19. Shivalkar B, Van Loon J, Wieland W, et al. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation. 1993;87:230–9.

    Article  CAS  PubMed  Google Scholar 

  20. Huber TS, Kluger MJ, Harris SP, D’Alecy LG. Plasma profiles of IL-6-like and TNF-like activities in brain-dead dogs. Am J Phys. 1991;261(5 Pt 2):R1133–40.

    CAS  Google Scholar 

  21. Pratschke J, Wilhelm MJ, Kusaka M, et al. Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation. 1999;67:343–8.

    Article  CAS  PubMed  Google Scholar 

  22. Gøtzsche LB. Acute increase in cardiac performance after triiodothyronine: blunted response in amiodarone-treated pigs. J Cardiovasc Pharmacol. 1994;23:141–8.

    Article  PubMed  Google Scholar 

  23. Novitzky D, Cooper DKC, Reichart B. Hemodynamic and metabolic responses to hormonal therapy in brain-dead potential organ donors. Transplantation. 1987;43:852 854.

    Article  Google Scholar 

  24. Hall GM, Mashiter K, Lumley J, Robson JG. Hypothalamic-pituitary function in the “brain-dead” patient. Lancet. 1980;2:1259.

    Article  CAS  PubMed  Google Scholar 

  25. Schrader H, Krogness K, Aakvaag A, Sortland O, Purvis K. Changes of pituitary hormones in brain death. Acta Neurochir. 1980;52:239–48.

    Article  CAS  PubMed  Google Scholar 

  26. Rosendale JD, Chabalewski FL, McBride MA, et al. Increased transplanted organs from the use of a standardized donor management protocol. Am J Transplant. 2002;2:761–8.

    Article  PubMed  Google Scholar 

  27. Rosengard BR, Feng S, Alfrey EJ, et al. Report of the Crystal City meeting to maximize the use of organs recovered from the cadaver donor. Am J Transplant. 2002;2:701–11.

    Article  PubMed  Google Scholar 

  28. Zaroff JG, Rosengard BR, Armstrong WF, et al. Consensus conference report: maximizing use of organs recovered from the cadaver donor: cardiac recommendations, March 28-29, 2001, Crystal City, Va. Circulation. 2002;106:836–41.

    Article  PubMed  Google Scholar 

  29. Zaroff JG, Rosengard BR, Armstrong WF, et al. Maximizing use of organs recovered from the cadaver donor: cardiac recommendations. J Heart Lung Transplant. 2002;21:1153–60.

    Article  Google Scholar 

  30. Rosendale JD, Kauffman HM, McBride MA, et al. Aggressive pharmacologic donor management results in more transplanted organs. Transplantation. 2003;75:482–7.

    Article  PubMed  Google Scholar 

  31. Rosendale JD, Kauffman HM, McBride MA, et al. Hormonal resuscitation yields more transplanted hearts, with improved early function. Transplantation. 2003;75:1336–41.

    Article  PubMed  Google Scholar 

  32. Novitzky D, Cooper DK, Rosendale JD, Kauffman HM. Hormonal therapy of the brain-dead organ donor: experimental and clinical studies. Transplantation. 2006;82:1396–401.

    Article  CAS  PubMed  Google Scholar 

  33. Cooper DKC, Novitzky D, Wicomb WN, Basker M, Rosendale JD, Kauffman HM. A review of studies relating to thyroid hormone therapy in brain-dead organ donors and patients undergoing cardiopulmonary bypass. Front Biosci. 2009;14:3750–70.

    Article  CAS  Google Scholar 

  34. Macdonald PS, Aneman A, Bhonagiri D, Jones D, O’Callaghan G, Silvester W, et al. A systematic review and meta-analysis of clinical trials of thyroid hormone administration to brain dead potential organ donors. Crit Care Med. 2012;40:1635–44.

    Article  CAS  PubMed  Google Scholar 

  35. Rech TH, Moraes RB, Crispim D, Czepielewski MA, Leitao CB. Management of the brain-dead organ donor: a systematic review and meta-analysis. Transplantation. 2013;95:966–74.

    Article  PubMed  Google Scholar 

  36. Callahan DS, Kim D, Bricker S, Neville A, Putnam B, Smith J, et al. Trends in organ donor management: 2002 to 2012. J Am Coll Surg. 2014;219:752–6.

    Article  PubMed  Google Scholar 

  37. Novitzky D, Mi Z, Sun Q, Collins JF, Cooper DK. Thyroid hormone therapy in the management of 63,593 brain-dead organ donors: a retrospective analysis. Transplantation. 2014;98:1119–27.

    Article  CAS  PubMed  Google Scholar 

  38. Novitzky D, Mi Z, Collins JF, Cooper DKC. Increased procurement of thoracic donor organs after thyroid hormone therapy. Semin Thorac Cardiovasc Surg. 2015;27:123–32.

    Article  PubMed  Google Scholar 

  39. Novitzky D, Mi Z, Videla LA, Collins JF, Cooper DKC. Hormone resuscitation therapy for brain-dead donors—is insulin beneficial or detrimental? Clin Transpl. 2016;30:754–9.

    Article  CAS  Google Scholar 

  40. Novitzky D, Mi Z, Videla LA, Collins JF, Cooper DKC. Thyroid hormone therapy and procurement of livers from brain-dead donors. Endocr Res. 2016;41:270–3.

    Article  CAS  PubMed  Google Scholar 

  41. Mi Z, Novitzky D, Collins JF, Cooper DKC. The optimal hormonal replacement modality selection for multiple organ procurement from brain-dead organ donors. Clin Epidemiol. 2014;7:17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Novitzky D, Cooper DK. Thyroid hormone and the stunned myocardium. J Endocrinol. 2014;223:R1–8. https://doi.org/10.1530/JOE-14-0389.

    Article  CAS  PubMed  Google Scholar 

  43. Perrotta C, Buldorini M, Assi E, Cazzato D, De Palma C, Clementi E, et al. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation. Am J Pathol. 2014;184:230–47.

    Article  CAS  PubMed  Google Scholar 

  44. Bremner WF, Taylor KM, Baird S, et al. Hypothalamo-pituitary-thyroid axis function during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1978;75:392–9.

    Article  CAS  PubMed  Google Scholar 

  45. Robuschi G, Medici D, Fesani F, et al. Cardiopulmonary bypass: a low T4 and T3 syndrome with blunted thyrotropin (TSH) response to thyrotropin-releasing hormone (TRH). Horm Res. 1986;23:151–8.

    Article  CAS  PubMed  Google Scholar 

  46. Novitzky D, Human PA, Cooper DKC. Inotropic effect of trioodothyronine following myocardial ischemia and cardiopulmonary bypass: an experimental study in pigs. Ann Thorac Surg. 1988;45:50–5.

    Article  CAS  PubMed  Google Scholar 

  47. Novitzky D, Human PA, Cooper DKC. Effect of triiodothyronine (T3) on myocardial high-energy phosphates and lactates following ischemia and cardiopulmonary bypass—an experimental study in baboons. J Thorac Cardiovasc Surg. 1988;96:600–7.

    Article  CAS  PubMed  Google Scholar 

  48. Novitzky D, Matthews N, Shawley D, Cooper DK, Zuhdi N. Triiodothyronine in the recovery of stunned myocardium in dogs. Ann Thorac Surg. 1991;51:10–6. discussion 16-17.

    Article  CAS  PubMed  Google Scholar 

  49. Yokoyama Y, Novitzky D, Deal MT, Snow TR. Facilitated recovery of cardiac performance by triiodothyronine following a transient ischemic insult. Cardiology. 1992;81:34–45.

    Article  CAS  PubMed  Google Scholar 

  50. Novitzky D, Cooper DKC, Swanepoel A. Inotropic effect of triiodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery. Eur J Cardiothorac Surg. 1989;3:140–5.

    Article  CAS  PubMed  Google Scholar 

  51. Novitzky D, Cooper DKC, Barton C, et al. Triiodothyronine (T3) as an inotropic agent after open-heart surgery. J Thorac Cardiovasc Surg. 1989;98:972–7.

    Article  CAS  PubMed  Google Scholar 

  52. Novitzky D, Fontanet H, Snyder M, et al. Impact of triiodothyronine therapy in the survival of high risk patients undergoing open heart surgery. Cardiology. 1996;87:509–15.

    Article  CAS  PubMed  Google Scholar 

  53. Portman MA, Slee A, Olson AK, et al. Triiodothyronine supplementation in infants and children undergoing cardiopulmonary bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122:S224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klemperer JD, Klein I, Gomez M, et al. Thyroid hormone treatment after coronary artery bypass surgery. N Engl J Med. 1995;333:1522–7.

    Article  CAS  PubMed  Google Scholar 

  55. Novitzky D, Cooper DKC, Human PA, Reichart B, Zuhdi N. Triiodothyronine therapy for heart donor and recipient. J Heart Transplant. 1988;7:370–6.

    CAS  PubMed  Google Scholar 

  56. Novitzky D, Cooper DKC, Chaffin JS, Greer AE, DeBault LE, Zuhdi N. Improved cardiac allograft function following triiodothyronine therapy to both donor and recipient. Transplantation. 1990;49:311–6.

    Article  CAS  PubMed  Google Scholar 

  57. Taniguchi S, Cooper DKC. The potential role of thyroid hormone substitutes in cardiac surgery and transplantation. Asia Pac J Thorac Cardiovasc Surg. 1996;5:40–6.

    Article  Google Scholar 

  58. Slag MF, Morley JE, Elson MK, Crowson TW, Nuttall FQ, Shafer RB. Hypothyroxinemia in critically ill patients as a predictor of high mortality. JAMA. 1981;245:43–5.

    Article  CAS  PubMed  Google Scholar 

  59. Gupta MK, Singh DB, Shukla R, Misra K. A comprehensive metabolic modeling of thyroid pathway in relation to thyroid pathophysiology and therapeutics. OMICS. 2013;17:584–93.

    Article  CAS  PubMed  Google Scholar 

  60. van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014;24:1456–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Warner MH, Beckett GJ. Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol. 2010;205:1–13.

    Article  CAS  PubMed  Google Scholar 

  62. Forhead AJ, Li J, Gilmour RS, Fowden AL. Control of hepatic insulin-like growth factor II gene expression by thyroid hormones in fetal sheep near term. Am J Phys. 1998;275(1 Pt 1):E149–56.

    CAS  Google Scholar 

  63. Bjelobaba I, Janjic MM, Stojilkovic SS. Purinergic signaling pathways in the endocrine system. Auton Neurosci. 2015;191:102–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Udenze IC, Olowoselu OF, Egbuagha EU, Oshodi TA. Thyroid, cortisol and growth hormone levels in adult Nigerians with metabolic syndrome. Afr Med J. 2017;26:52.

    Google Scholar 

  65. Meyer S, Schuetz P, Wieland M, Nusbaumer C, Mueller B, Christ-Crain M. Low triiodothyronine syndrome: a prognostic marker for outcome in sepsis. Endocrine. 2011;39:167–74.

    Article  CAS  PubMed  Google Scholar 

  66. Bouillon R, Drucker DJ, Ferrannini E, Grinspoon S, Rosen CJ, Zimmet P. The past 10 years—new hormones, new functions, new endocrine organs. Nat Rev Endocrinol. 2015;11:681–6.

    Article  CAS  PubMed  Google Scholar 

  67. Martinez-Sanchez N, Seoane-Collazo P, Contreras C, et al. Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab. 2017;26:212–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ojamaa K, Klemperer JD, Klein I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid. 1996;6:505–12.

    Article  CAS  PubMed  Google Scholar 

  69. Kelly G. Peripheral metabolism of thyroid hormones: a review. Altern Med Rev. 2000;5:306–33.

    CAS  PubMed  Google Scholar 

  70. Forini F, Lionetti V, Ardehali H, et al. Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodelling in rats. J Cell Mol Med. 2011;15:514–24.

    Article  CAS  PubMed  Google Scholar 

  71. Fraczek MM, Łacka K. Thyroid hormone and the cardiovascular system. Pol Merkur Lekarski. 2014;37:170–4.

    PubMed  Google Scholar 

  72. Yoneda K, Takasu N, Higa S, et al. Direct effects of thyroid hormones on rat coronary artery: nongenomic effects of triiodothyronine and thyroxine. Thyroid. 1998;8:609–13.

    Article  CAS  PubMed  Google Scholar 

  73. Snow TR, Deal MT, Connelly TS, Yokoyama Y, Novitzky D. Acute inotropic response of rabbit papillary muscle to triiodothyronine. Cardiology. 1992;80:112–7.

    Article  CAS  PubMed  Google Scholar 

  74. Yang X, Rodriguez M, Pabon L, et al. Tri-iodo-l-thyronine promotes the maturation of pluripotent stem cells. J Mol Cell Cardiol. 2014;72:296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dongworth RK, Hall AR, Burke N, Hausenloy DJ. Targeting mitochondria for cardioprotection: examining the benefit for patients. Futur Cardiol. 2014;10:255–72.

    Article  CAS  Google Scholar 

  76. Korga A, Dudka J, Burdan F, Sliwinska J, Mandziuk S, Dawidek-Pietryka K. Regulation of sarco(endo)plasmic reticulum Ca2+-ATPase and calsequestrin gene expression in the heart. Can J Physiol Pharmacol. 2012;90:1017–28.

    Article  CAS  Google Scholar 

  77. Carrillo-Sepulveda MA, Ceravolo GS, Furstenau CR, et al. Emerging role of angiotensin type 2 receptor (AT2R)/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism. PLoS One. 2013;8:e61982. https://doi.org/10.1371/journal.pone.0061982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang F, Pan W, Wang H, Wang S, Pan S, Ge J. Relationship between thyroid function and ICU mortality: an observation study. Crit Care. 2012;16:R11. https://doi.org/10.1186/cc11151.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wajner SM, Maia AL. New insights toward the acute non-thyroidal Illness syndrome. Front Endocrinol. 2012;3:8. https://doi.org/10.3389/fendo.2012.00008.

    Article  Google Scholar 

  80. Jarek MJ, Legare EJ, McDermott MT, Merenich JA, Kollef MH. Endocrine profiles for outcome prediction from the intensive care unit. Crit Care Med. 1993;21:543–50.

    Article  CAS  PubMed  Google Scholar 

  81. Türe M, Memiş D, Kurt I, Pamukçu Z. Predictive value of thyroid hormones on the first day in adult respiratory distress syndrome patients admitted to ICU: comparison with SOFA and APACHE II scores. Ann Saudi Med. 2005;25:466–72.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ilias I, Stamoulis K, Armaganidis A, et al. Contribution of endocrine parameters in predicting outcome of multiple trauma patients in an intensive care unit. Hormones (Athens). 2007;6:218–26.

    Google Scholar 

  83. Rhee J-Y, Kwon KT, Ki HK, et al. Scoring systems for prediction of mortality in patients with intensive care unit-acquired sepsis: a comparison of the Pitt bacteremia score and the Acute Physiology and Chronic Health Evaluation II scoring systems. Shock. 2009;31:146–50.

    Article  PubMed  Google Scholar 

  84. Grais IM, Sowers JR. Thyroid and the heart. Am J Med. 2014;127:691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mancini A, Di Segni C, Raimondo S, et al. Thyroid hormones, oxidative stress, and inflammation. Mediat Inflamm. 2016;2016:6757154.

    Article  CAS  Google Scholar 

  86. Ferrari R, Balla C, Malagu M, et al. Reperfusion damage—a story of success, failure, and hope. Circ J. 2017;81:131–41.

    Article  CAS  PubMed  Google Scholar 

  87. Bhat MA, Laway BA, Shah ZA, Wani AI, Mubarik I. Insulin resistance, metabolic syndrome and chronic low grade inflammation in Sheehan’s syndrome on standard replacement therapy: a case control study. Pituitary. 2015;18:312–8.

    Article  PubMed  Google Scholar 

  88. Quispe EÁ, Li XM, Yi H. Comparison and relationship of thyroid hormones, IL-6, IL-10 and albumin as mortality predictors in case-mix critically ill patients. Cytokine. 2016;81:94–100.

    Article  CAS  Google Scholar 

  89. Falconer IR, Jacks F. Effect of adrenal hormones on thyroid secretion and thyroid hormones on adrenal secretion in the sheep. J Physiol. 1975;250:261–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walfish PG. Triiodothyronine and thyroxine interrelationships in health and disease. Can Med Assoc J. 1976;115:338–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pracyk JB, Slotkin TA. Thyroid hormone differentially regulates development of beta-adrenergic receptors, adenylate cyclase and o4rnithine decarboxylase in rat heart and kidney. J Dev Physiol. 1991;16:251–61.

    CAS  PubMed  Google Scholar 

  92. Gou DY, Su W, Shao YC, Lu YL. Euthyroid sick syndrome in trauma patients with severe inflammatory response syndrome. Chin J Traumatol. 2006;9:115–7.

    PubMed  Google Scholar 

  93. Harper ME, Seifert EL. Thyroid hormone effects on mitochondrial energetics. Thyroid. 2008;18:145–56.

    Article  CAS  PubMed  Google Scholar 

  94. Kimmoun A, Novy E, Auchet T, Ducrocq N, Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care. 2015;19:175. [Erratum 2017].

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gheorghiţă V, Barbu AE, Gheorghiu ML, Căruntu FA. Endocrine dysfunction in sepsis: a beneficial or deleterious host response. Germs. 2015;5:17–25.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, Van den Berghe G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88:3202–11.

    Article  CAS  PubMed  Google Scholar 

  97. Peeters RP, Wouters PJ, van Toor H, Kaptein E, Visser TJ, Van den Berghe G. Serum 3,3′,5′-triiodothyronine (rT3) and 3,5,3′-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab. 2005;90:4559–65.

    Article  CAS  PubMed  Google Scholar 

  98. Schlienger JL, Anceau A, Chabrier G, North ML, Stephan F. Effect of diabetic control on the level of circulating thyroid hormones. Diabetologia. 1982;22:486–8.

    Article  CAS  PubMed  Google Scholar 

  99. Ziegler MG, Morrissey EC, Marshall LF. Catecholamine and thyroid hormones in traumatic injury. Crit Care Med. 1990;18:253–8.

    Article  CAS  PubMed  Google Scholar 

  100. van den Berghe G. Dynamic neuroendocrine responses to critical illness. Front Neuroendocrinol. 2002;23:370–91.

    Article  PubMed  CAS  Google Scholar 

  101. Opasich C, Pacini F, Ambrosino N, et al. Sick euthyroid syndrome in patients with moderate-to-severe chronic heart failure. Eur Heart J. 1996;17:1860–6.

    Article  CAS  PubMed  Google Scholar 

  102. Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26:704–28.

    Article  CAS  PubMed  Google Scholar 

  103. Di Napoli M, Reda G, Zannoni G, Russo S, Morace G, Vasselli C. The euthyroid sick syndrome. Its incidence and clinical significance in an internal medicine department. Minerva Med. 1994;85:161–5.

    PubMed  Google Scholar 

  104. Scoscia E, Baglioni S, Eslami A, Iervasi G, Monti S, Todisco T. Low triiodothyronine (T3) state: a predictor of outcome inrespiratory failure? Results of a clinical pilot study. Eur J Endocrinol. 2004;151:557–60.

    Article  CAS  PubMed  Google Scholar 

  105. van Thiel DH, Udani M, Schade RR, Sanghvi A, Starzl TE. Prognostic value of thyroid hormone levels in patients evaluated for liver transplantation. Hepatology. 1985;5:862–6.

    Article  PubMed  Google Scholar 

  106. Caregaro L, Alberino F, Amodio P, et al. Nutritional and prognostic significance of serum hypothyroxinemia in hospitalized patients with liver cirrhosis. J Hepatol. 1998;28:115–21.

    Article  CAS  PubMed  Google Scholar 

  107. Lim VS, Fang VS, Katz AI, Refetoff S. Thyroid dysfunction in chronic renal failure a study of the pituitary-thyroid axis and peripheral turnover kinetics of thyroxine and Triiodothyronine. J Clin Invest. 1977;60:522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zoccali C, Tripepi G, Cutrupi S, Pizzini P, Mallamaci F. Low triiodothyronine: a new facet of inflammation in end-stage renal disease. J Am Soc Nephrol. 2005;16:2789–95.

    Article  CAS  PubMed  Google Scholar 

  109. Carrero JJ, Qureshi AR, Axelsson J, et al. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J Intern Med. 2007;262:690–701.

    Article  CAS  PubMed  Google Scholar 

  110. Zaloga GP, Chernow B, Smallridge RC, et al. Longitudinal evaluation of thyroid function in critically ill surgical patients. Ann Surg. 1985;201:456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wyne KL. The role of thyroid hormone therapy in acutely ill cardiac patients. Crit Care. 2005;9:333–4.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeold A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94:355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Peeters RP. Non thyroidal illness: to treat or not to treat? Ann Endocrinol. 2007;68:224–8.

    Article  CAS  Google Scholar 

  115. Farwell AP. Thyroid hormone therapy is not indicated in the majority of patients with the sick euthyroid syndrome. Endocr Pract. 2008;14:1180–7.

    Article  PubMed  Google Scholar 

  116. Pingitore A, Galli E, Barison A, et al. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93:1351–8.

    Article  CAS  PubMed  Google Scholar 

  117. DeGroot LJ. Non-thyroidal illness syndrome is functional central hypothyroidism, and if severe, hormone replacement is appropriate in light of present knowledge. J Endocrinol Investig. 2003;26:1163–70.

    Article  CAS  Google Scholar 

  118. Bello G, Ceaicchisciuc I, Silva S, Antonnelli M. The role of thyroid dysfunction in the critically ill: review of the literature. Minerva Anestesiol. 2010;76:919–928a.

    CAS  PubMed  Google Scholar 

  119. Novitzky D. Reversal of the non-thyroid illness syndrome (NTIS) by thyroid hormone therapy in a patient with severe heart failure from dilated cardiomyopathy. Rev Argent Cardiol. 2018;86. https://doi.org/10.7775/rac.v86.i3.12890.

  120. Papanicolaou DA. Euthyroid sick syndrome and the role of cytokines. Rev Endocr Metab Disord. 2000;1:43–8.

    Article  CAS  PubMed  Google Scholar 

  121. Wartofsky L, Burman KD. Alterations in thyroid function in patients with systemic illness: the ‘euthyroid sick syndrome’. Endocr Rev. 1982;3:164–217.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. C. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Novitzky, D., Cooper, D.K.C. (2020). Thyroid Hormone Treatment in Heart Surgery and Heart Transplantation. In: Iervasi, G., Pingitore, A., Gerdes, A., Razvi, S. (eds) Thyroid and Heart . Springer, Cham. https://doi.org/10.1007/978-3-030-36871-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36871-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36870-8

  • Online ISBN: 978-3-030-36871-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics