Skip to main content

Discretization of Laplace-Beltrami Operator Based on Cotangent Scheme and Its Applications

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11956))

Included in the following conference series:

  • 1371 Accesses

Abstract

Laplace-Beltrami operator (LBO) is the basis of describing geometric partial differential equation. It also plays an important role in computational geometry, computer graphics and image processing, such as surface parameterization, shape analysis, matching and interpolation. Due to the different application fields of Laplace-Beltrami operator need to meet the mathematical properties of different, has produced many discretization methods but cannot replace each other discretization method, different discretization method can reduce the time complexity, at the same time can improve an inefficient algorithm. In this article, We are mainly aimed at discretization based on the Laplace-Beltrami cotangent operator. We improve the original discretization method and apply it to non-rigid 3D shape retrieval tasks. Experimental results shows the effectiveness of our discretization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamann, B.: Curvature approximation for triangulated surfaces. Computing 8(8), 139–153 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Wetzler, A., Aflalo, Y., Dubrovina, A., Kimmel, R.: The Laplace-Beltrami operator: a ubiquitous tool for image and shape processing. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 302–316. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_26

    Chapter  MATH  Google Scholar 

  3. Afrose, Z., Shen, Y.: Mesh color sharpening. Adv. Eng. Softw. 91(C), 36–43 (2016)

    Article  Google Scholar 

  4. Tan, M., Qiu, A.: Spectral Laplace-Beltrami wavelets with applications in medical images. IEEE Trans. Med. Imaging 34(5), 1005–1017 (2015)

    Article  Google Scholar 

  5. Caissard, T., Coeurjolly, D., Lachaud, J.-O., Roussillon, T.: Heat Kernel Laplace-Beltrami operator on digital surfaces. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 241–253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5_20

    Chapter  Google Scholar 

  6. Boscain, U., Prandi, D.: Self-adjoint extensions and stochastic completeness of the Laplace-Beltrami operator on conic and anticonic surfaces. J. Differ. Equ. 260(4), 3234–3269 (2015)

    Article  MathSciNet  Google Scholar 

  7. Burman, E., Hansbo, P., Larson, M.G.: A stabilized cut finite element method for partial differential equations on surfaces: the Laplace-Beltrami operator. Comput. Methods Appl. Mech. Eng. 285, 188–207 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bartezzaghi, A., Dedè, L., Quarteroni, A.: Isogeometric analysis of high order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 295, 446–469 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chou, P.A., Pavez, E., De Queiroz, R.L., et al.: Dynamic polygon clouds: representation and compression for VR/AR (2017)

    Google Scholar 

  10. Pavez, E., Chou, P.A.: Dynamic polygon cloud compression. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2936–2940. IEEE (2017)

    Google Scholar 

  11. Reuter, M.: Laplace Spectra for Shape Recognition (2006). ISBN 3-8334-5071-1

    Google Scholar 

  12. Wardetzky, M., Mathur, S., Lberer, F., et al.: Discrete laplace operators: no free lunch. In: Eurographics Symposium on Geometry Processing (2007)

    Google Scholar 

  13. Trillos, N.G., Gerlach, M., Hein, M., et al.: Error estimates for spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace–Beltrami operator (2018)

    Google Scholar 

  14. Wu, J.Y., Chi, M.H., Chen, S.G.: Convergent discrete Laplace-Beltrami operators over surfaces. Mathematics (2010)

    Google Scholar 

  15. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 22 (1993)

    Article  MathSciNet  Google Scholar 

  16. Bobenko, A.I., Springborn, B.A.: A discrete Laplace-Beltrami operator for simplicial surfaces (2005)

    Google Scholar 

  17. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 351–358. ACM Press (1995)

    Google Scholar 

  18. Mayer, U.F.: Numerical solutions for the surface diffusion flow in three space dimensions. Comput. Appl. Math. 20(3), 361–379 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH, pp. 317–324 (1999)

    Google Scholar 

  20. Meyer, M., Desbrun, M., Schröder, P., et al.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. 3(8–9), 35–57 (2002)

    MATH  Google Scholar 

  21. Wardetzky, M., Bergou, M., Harmon, D., et al.: Discrete quadratic curvature energies. Comput. Aided Geom. Des. 24(8), 499–518 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Windheuser, T., Vestner, M., Rodolà, E., et al.: Optimal intrinsic descriptors for non-rigid shape analysis. In: BMVC (2014)

    Google Scholar 

  23. Chiotellis, I., Triebel, R., Windheuser, T., Cremers, D.: Non-rigid 3D shape retrieval via large margin nearest neighbor embedding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part II. LNCS, vol. 9906, pp. 327–342. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_21

    Chapter  Google Scholar 

Download references

Acknowledgment

We acknowledge the National Natural Science Foundation of China for its financial support (Grant No. 61502284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q., Duan, C. (2019). Discretization of Laplace-Beltrami Operator Based on Cotangent Scheme and Its Applications. In: Milošević, D., Tang, Y., Zu, Q. (eds) Human Centered Computing. HCC 2019. Lecture Notes in Computer Science(), vol 11956. Springer, Cham. https://doi.org/10.1007/978-3-030-37429-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37429-7_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37428-0

  • Online ISBN: 978-3-030-37429-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics