Skip to main content

Causality-Based Testing in Time Petri Nets

  • Conference paper
  • First Online:
Perspectives of System Informatics (PSI 2019)

Abstract

The intention of the paper is towards a causality-based framework for developing, studying, and comparing testing equivalences with causal net and causal tree semantics in the setting of time Petri nets (elementary net systems whose transitions are labeled with time firing intervals, can fire only if their lower time bounds are attained, and are forced to fire when their upper time bounds are reached). We establish the relationships between the equivalences showing the similarity of the semantics under consideration. This allows studying in detail the timing behaviour in addition to the degrees of relative concurrency of processes generated during the functioning of time Petri nets.

This work is supported in part by DFG (project CAVER, grant BE 1267/14-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For technical convenience, we do not use the classical definition: a transition \(t\in T\) is enabled at a marking M if \(^{\bullet }t\subseteq M\) and \(M \cap t^{\bullet }=\emptyset \). We will require the second part in the definition of the contact-free property.

  2. 2.

    Clearly, if the underlying Petri net of \(\mathcal{TN}\) is contact-free, then \(\mathcal{TN}\) must be contact-free as well, but not vice versa.

  3. 3.

    The time-progressive property shall guarantee the correctness of the modified definition of the contact-free property, for our purposes.

  4. 4.

    A (labeled over Act) time poset (partially ordered set) is a tuple \(\eta =(X,\preceq ,\lambda ,\tau )\) consisting of a finite set X of elements; a reflexive, antisymmetric and transitive relation \(\preceq \); a labeling function \(\lambda :X\rightarrow Act\); and a timing function \(\tau : X \rightarrow \mathbb {T}\) such that \(e\preceq e'\Rightarrow \tau (e)\le \tau (e')\). Let \(\tau (\eta )=\max \{\tau (x)\mid x\in X\}\).

  5. 5.

    We assume \(path(\epsilon )=\epsilon \). Notice that in \(TCT(\mathcal{TN})\), for any node \(\sigma \in \mathcal {FS}(\mathcal{TN})\), there is a path starting from the root and finishing in \(\sigma \).

  6. 6.

    A time poset \(\eta \) is a direct prefix of a time poset \(\eta '\) (denoted \({\eta }\prec \cdot \;{\eta '}\)) iff \(X\subseteq X'\), \(X'\setminus X = \{x\}\), \(\preceq =\preceq '\cap (X\times X)\), \(\lambda =\lambda '\mid _{X}\), \(\tau =\tau '\mid _{X}\), and x is a maximal w.r.t. \(\preceq '\) element of \(X'\).

  7. 7.

    Time posets, \(\eta =(X,\preceq ,\lambda ,\tau )\) and \(\eta '=(X',\preceq ',\lambda ',\tau ')\), are isomorphic (denoted \(\eta \simeq \eta '\)) iff there is a bijective mapping \(\beta :X \rightarrow X'\) such that (i) \(x \preceq y\ \iff \ \beta (x) \preceq ' \beta (y)\), for all \(x,y\in X\); (ii) \(\lambda (x)=\lambda '(\beta (x))\) and \(\tau (x)=\tau '(\beta (x))\), for all \(x \in X\).

References

  1. Aceto, L.: History preserving, causal and mixed-ordering equivalence over stable event structures. Fundamenta Informaticae 17(4), 319–331 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Aceto, L., De Nicola, R., Fantechi, A.: Testing equivalences for event structures. Lect. Notes Comput. Sci. 280, 1–20 (1987)

    Article  MathSciNet  Google Scholar 

  3. Aura, T., Lilius, J.: A causal semantics for time Petri nets. Theor. Comput. Sci. 243, 409–447 (2000)

    Article  MathSciNet  Google Scholar 

  4. Andreeva, M., Bozhenkova, E., Virbitskaite, I.: Analysis of timed concurrent models based on testing equivalenc. Fundamenta Informaticae 43, 1–20 (2000)

    Article  MathSciNet  Google Scholar 

  5. Andreeva, M., Virbitskaite, I.: Observational equivalences for timed stable event structures. Fundamenta Informaticae 72(1–3), 1–19 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Bihler, E., Vogler, W.: Timed Petri nets: efficiency of asynchronous systems. Lect. Notes Comput. Sci. 3185, 25–58 (2004)

    Article  Google Scholar 

  7. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. Lect. Notes Comput. Sci. 407, 11–23 (1989)

    Article  Google Scholar 

  8. Cleaveland, R., Zwarico, A.E.: A theory of testing for real-time. In: Proceedings of 6th IEEE Symposium on Logic in Computer Science ( LICS 1991), Amsterdam, The Netherlands, pp. 110–119 (1991)

    Google Scholar 

  9. Corradini, F., Vogler, W., Jenner, L.: Comparing the worst-case efficiency of asynchronous systems with PAFAS. Technical report, N 2000–6, Inst. fur Informatik of Univ. of Augsburg (2000)

    Google Scholar 

  10. Darondeau, P., Degano, P.: Refinement of actions in event structures and causal trees. Theor. Comput. Sci. 118, 21–48 (1993)

    Article  MathSciNet  Google Scholar 

  11. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica 24, 211–237 (1987)

    Article  MathSciNet  Google Scholar 

  12. De Nicola, R., Hennessy, M.: Testing equivalence for processes. Theor. Comput. Sci. 34, 83–133 (1984)

    Article  MathSciNet  Google Scholar 

  13. Rozenberg, G., Engelfriet, J.: Elementary net systems. Lect. Notes Comput. Sci. 1491, 12–121 (1998)

    Article  Google Scholar 

  14. Goltz, U., Wehrheim, H.: Causal testing. Lect. Notes Comput. Sci. 1113, 394–406 (1996)

    Article  MathSciNet  Google Scholar 

  15. Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117, 221–239 (1995)

    Article  MathSciNet  Google Scholar 

  16. Llana, L., de Frutos, D.: Denotational semantics for timed testing. Lect. Notes Comput. Sci. 1233, 368–382 (1997)

    Article  Google Scholar 

  17. Murphy, D.: Time and duration in noninterleaving concurrency. Fundamenta Informaticae 19, 403–416 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Steffen, B., Weise, C.: Deciding testing equivalence for real-time processes with dense time. Lect. Notes Comput. Sci. 711, 703–713 (1993)

    Article  MathSciNet  Google Scholar 

  19. Virbitskaite, I., Bushin, D., Best, E.: True concurrent equivalences in time Petri nets. Fundamenta Informaticae 149(4), 401–418 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bozhenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bozhenkova, E., Virbitskaite, I., Popova-Zeugmann, L. (2019). Causality-Based Testing in Time Petri Nets. In: Bjørner, N., Virbitskaite, I., Voronkov, A. (eds) Perspectives of System Informatics. PSI 2019. Lecture Notes in Computer Science(), vol 11964. Springer, Cham. https://doi.org/10.1007/978-3-030-37487-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37487-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37486-0

  • Online ISBN: 978-3-030-37487-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics