Skip to main content

Generating Neural Archetypes to Instruct Fast and Interpretable Decisions

  • Conference paper
  • First Online:
Decision Economics: Complexity of Decisions and Decisions for Complexity (DECON 2019)

Abstract

In the field of artificial intelligence, agents learn how to take decisions by fitting their parameters on a set of samples called training set. Similarly, a core set is a subset of the training samples such that, if an agent exploits this set to fit its parameters instead of the whole training set, then the quality of the inferences does not change significantly. Relaxing the constraint that restricts the search for core sets to the available data, neural networks may be used to generate virtual samples, called archetype set, containing the same kind of information. This work illustrates the features of GH-ARCH, a recently proposed self-organizing hierarchical neural network for archetype discovery. Experiments show how the use of archetypes allows both ML agents to make fast and accurate predictions and human experts to make sense of such decisions by analyzing few important samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bitbucket.org/neurocoreml/archetypical-neural-coresets/.

References

  1. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)

  2. Mitchell Waldrop, M.: News feature: what are the limits of deep learning? Proc. Natl. Acad. Sci. 116(4), 1074–1077 (2019)

    Article  Google Scholar 

  3. Bachem, O., Lucic, M., Krause, A.: Practical coreset constructions for machine learning. arXiv preprint arXiv:1703.06476 (2017)

  4. Ciravegna, G., Barbiero, P., Cirrincione, G., Squillero, G., Tonda, A.: Discovering hierarchical neural archetype sets. In: The International Joint Conference on Neural Networks (IJCNN), July 2019

    Google Scholar 

  5. Cirrincione, G., Ciravegna, G., Barbiero, P., Randazzo, V., Pasero, E.: The GH-EXIN neural network for hierarchical clustering. Neural Networks (2019, under peer review)

    Google Scholar 

  6. Haykin, S.S.: Neural Networks and Learning Machines, vol. 3. Pearson, Upper Saddle River (2009)

    Google Scholar 

  7. Cirrincione, G., Randazzo, V., Pasero, E.: The growing curvilinear component analysis (GCCA) neural network. Neural Netw. 103, 108–117 (2018)

    Article  Google Scholar 

  8. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  10. Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943)

    MathSciNet  Google Scholar 

  11. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)

    Article  Google Scholar 

  12. Breiman, L.: Pasting small votes for classification in large databases and on-line. Mach. Learn. 36(1–2), 85–103 (1999)

    Article  Google Scholar 

  13. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc.: Ser. B (Methodol.) 20, 215–242 (1958)

    MathSciNet  MATH  Google Scholar 

  14. Campbell, T., Broderick, T.: Bayesian coreset construction via greedy iterative geodesic ascent. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  15. Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Trans. Algorithms 6, 63 (2010)

    Article  MathSciNet  Google Scholar 

  16. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44 (1993)

    Google Scholar 

  17. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–451 (2004)

    Article  MathSciNet  Google Scholar 

  18. Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near-optimal coresets for least-squares regression. Technical report (2013)

    Google Scholar 

  19. Efroymson, M.A.: Multiple regression analysis. Math. Methods Digital Comput. (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Barbiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbiero, P., Ciravegna, G., Cirrincione, G., Tonda, A., Squillero, G. (2020). Generating Neural Archetypes to Instruct Fast and Interpretable Decisions. In: Bucciarelli, E., Chen, SH., Corchado, J. (eds) Decision Economics: Complexity of Decisions and Decisions for Complexity. DECON 2019. Advances in Intelligent Systems and Computing, vol 1009. Springer, Cham. https://doi.org/10.1007/978-3-030-38227-8_6

Download citation

Publish with us

Policies and ethics