Skip to main content

Translational Biomarkers and Rationale Strategies to Overcome Resistance to Immune Checkpoint Inhibitors in Solid Tumors

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 180))

Abstract

Immune checkpoint inhibitors (ICIs) targeting the programed cell-death protein 1 (PD-1) or its ligand PD-L1 and cytotoxic T-lymphocyte antigen 4 (CTLA-4) pathways have improved the survival for patients with solid tumors. Unfortunately, durable clinical responses are seen in only 10–40% of patients at the cost of potential immune-related adverse events. In the tumor microenvironment (TME), tumor cells can influence the microenvironment by releasing extracellular signals and generating peripheral immune tolerance, while the immune cells can affect the initiation, growth, proliferation, and evolution of cancer cells. Currently, translational biomarkers that predict responses to ICIs include high PD-L1 tumor proportion score, defective DNA mismatch repair, high microsatellite instability, and possibly high tumor mutational burden. Characterization of immune cells in the TME, such as tumor-infiltrating lymphocytes, T-cell gene expression profile, T-cell receptor sequencing, and peripheral blood biomarkers are being explored as promising biomarkers. Recent neoadjuvant studies have integrated the real-time assessment of both molecular and immune biomarkers using the tissue and blood specimens simultaneously and longitudinally. This review summarizes the current knowledge and progress in developing translational biomarkers and rational combinational strategies to improve the efficacy of ICIs tailored to individual cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ALC:

Absolute lymphocyte counts

ANC:

Absolute neutrophil counts

APCs:

Antigen-presenting cells

B2M:

Beta-2-microglobulin

BRCA:

Breast cancer

bTMB:

Blood tumor mutation burden

CAMLs:

Cancer-associated macrophage-like cells

CCR:

C-C Motif Chemokine Receptor

CE:

Conformité Européene

CRP:

C-reaction protein

CTL:

Cytotoxic T lymphocytes

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

CTCs:

Circulating tumor cells

CXCR:

C-X-C Motif Chemokine Receptor

dMMR:

Deficient mismatch repair

dNLR:

Derived neutrophil-to-lymphocyte ratio

ECM:

Extracellular matrix 

ELISPOT:

Enzyme-linked immune absorbent spot

FFPE:

Formalin-fixed paraffin-embedded

FOXP3:

Forkhead box P3

GEP:

Gene expression profile

HLA:

Human leukocyte antigen

HNSCC:

Head and neck squamous cell carcinomas

ICIs:

Immune checkpoint inhibitors

ICOS:

Inducible costimulator

IDO:

Indoleamine-pyrrole 2,3-dioxygenase

IFN-γ:

Interferon-gamma

IFNGR1:

IFN-γ receptor 1

IFNGR2:

IFN-γ receptor 2

IRF1:

IFN regulatory factor 1

IHC:

Immunohistochemical stain

irAEs:

Immune-related adverse events

IL:

Interleukin,

JAK:

Janus kinase

LAG3:

Lymphocyte-activation protein 3

LDH:

Lactate dehydrogenase

LIPI:

Lung immune prognostic index

NGS:

Next-generation sequencing

NSCLC:

Non-small cell lung cancer

mAbs:

Monoclonal antibodies

MDSC:

Myeloid-derived suppressor cell

MHC:

Major histocompatibility complex

MSI-H:

Microsatellite instability–high

NK:

Natural killer

OS:

Overall survival

PBMC:

Peripheral blood mononuclear cell

pCR:

Pathological complete response

PD-1:

Programed cell-death protein 1

PD-L1:

Programed cell-death protein ligand 1

PDX:

Patient-derived xenograft

PFS:

Progression-free survival

STAT:

Signal transducer and activator of transcription

STING:

Stimulator of interferon gene

TAAs:

Tumor-associated antigens

TCR:

T cell receptor

TGF-β:

Transforming growth factor-beta

TILs:

Tumor-infiltrating lymphocytes

TIGIT:

T cell immunoreceptor with Ig and ITIM domains

TIM3:

T cell immunoglobulin and mucin domain-3

TMB:

Tumor mutational burden

TME:

Tumor microenvironment

TPS:

Total proportion score

WES:

Whole exome sequencing

VEGF:

Vascular endothelial growth factor

References

  1. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  CAS  PubMed  Google Scholar 

  2. Ma W, Gilligan BM, Yuan J, Li T (2016) Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 9(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64(3):1140–1145

    Article  CAS  PubMed  Google Scholar 

  4. Carretero-Gonzalez A, Lora D, Ghanem I, Zugazagoitia J, Castellano D, Sepulveda JM et al (2018) Analysis of response rate with ANTI PD1/PD-L1 monoclonal antibodies in advanced solid tumors: a meta-analysis of randomized clinical trials. Oncotarget 9(9):8706–8715

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang PF, Chen Y, Song SY, Wang TJ, Ji WJ, Li SW et al (2017) Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: a meta-analysis. Front Pharmacol 8:730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fujii T, Colen RR, Bilen MA, Hess KR, Hajjar J, Suarez-Almazor ME et al (2018) Incidence of immune-related adverse events and its association with treatment outcomes: the MD Anderson Cancer Center experience. Invest New Drugs 36(4):638–646

    Article  CAS  PubMed  Google Scholar 

  7. Sznol M, Ferrucci PF, Hogg D, Atkins MB, Wolter P, Guidoboni M et al (2017) Pooled analysis safety profile of nivolumab and ipilimumab combination therapy in patients with advanced melanoma. J Clin Oncol 35(34):3815–3822

    Article  CAS  PubMed  Google Scholar 

  8. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2016) Pembrolizumab versus Chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med

    Google Scholar 

  9. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  CAS  PubMed  Google Scholar 

  10. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  11. Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8(328):328rv4

    Google Scholar 

  12. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sacher AG, Gandhi L (2016) Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non–small-cell lung cancer: a review biomarkers for PD-1/PD-L1 inhibitor use in non–small-cell lung cancer biomarkers for PD-1/PD-L1 inhibitor use in non-small-cell lung cancer. JAMA Oncol 2(9):1217–1222

    Article  PubMed  Google Scholar 

  14. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT et al (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5(200):200ra116

    Google Scholar 

  20. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  21. Prendergast GC, Mondal A, Dey S, Laury-Kleintop LD, Muller AJ (2018) Inflammatory Reprogramming with IDO1 Inhibitors: turning immunologically unresponsive ‘cold’ tumors ‘hot’. Trends Cancer 4(1):38–58

    Article  CAS  PubMed  Google Scholar 

  22. Nuti M, Zizzari IG, Botticelli A, Rughetti A, Marchetti P (2018) The ambitious role of anti angiogenesis molecules: turning a cold tumor into a hot one. Cancer Treat Rev 70:41–46

    Article  CAS  PubMed  Google Scholar 

  23. Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO et al (2016) Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S (2017) Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv Exp Med Biol 1036:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trujillo JA, Sweis RF, Bao R, Luke JJ (2018) T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol Res 6(9):990–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gameiro SF, Ghasemi F, Barrett JW, Koropatnick J, Nichols AC, Mymryk JS et al (2018) Treatment-naive HPV+ head and neck cancers display a T-cell-inflamed phenotype distinct from their HPV− counterparts that has implications for immunotherapy. Oncoimmunology 7(10):e1498439

    Article  PubMed  PubMed Central  Google Scholar 

  27. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  28. Seo N, Akiyoshi K, Shiku H (2018) Exosome-mediated regulation of tumor immunology. Cancer Sci 109(10):2998–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118(1):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D’Urso CM, Wang ZG, Cao Y, Tatake R, Zeff RA, Ferrone S (1991) Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J Clin Invest 87(1):284–292

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hicklin DJ, Dellaratta DV, Kishore R, Liang B, Kageshita T, Ferrone S (1997) Beta2-microglobulin gene mutations in human melanoma cells: molecular characterization and implications for immune surveillance. Melanoma Res 7(Suppl 2):S67–S74

    CAS  PubMed  Google Scholar 

  32. Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R et al (2017) Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7(12):1420–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A et al (2016) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov

    Google Scholar 

  35. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q et al (2016) Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to Anti-CTLA-4 therapy. Cell 167(2):397–404 e9

    Google Scholar 

  36. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP et al (2017) Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9(379)

    Google Scholar 

  37. Ott PA, Bang Y, Razak AR, Bennouna J, Soria J, Rugo HS et al (2017) 84PD-relationship of PD-L1 and a T-cell inflamed gene expression profile (GEP) to clinical response in a multicohort trial of solid tumors (KEYNOTE [KN]028). ESMO 2017 Congress

    Google Scholar 

  38. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378(22):2078–2092

    Article  CAS  PubMed  Google Scholar 

  39. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  40. Neuman T, London M, Kania-Almog J, Litvin A, Zohar Y, Fridel L et al (2016) A harmonization study for the use of 22C3 PD-L1 immunohistochemical staining on ventana’s platform. J Thoracic Oncol 11(11):1863–1868

    Article  Google Scholar 

  41. Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K et al (2017) PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 12(2):208–222

    Article  PubMed  Google Scholar 

  42. Tsao MS, Kerr KM, Kockx M, Beasley MB, Borczuk AC, Botling J et al (2018) PD-L1 Immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol 13(9):1302–1311

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH et al (2017) Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep 19(1):203–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Necchi A, Anichini A, Raggi D, Briganti A, Massa S, Luciano R et al (2018) Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J Clin Oncol JCO1801148

    Google Scholar 

  47. Teo MY, Bambury RM, Zabor EC, Jordan E, Al-Ahmadie H, Boyd ME et al (2017) DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma. Clin Cancer Res 23(14):3610–3618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ et al (2017) Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol 2017

    Google Scholar 

  49. Lee V, Murphy A, Le DT, Diaz LA Jr (2016) Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist 21(10):1200–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen KH, Yuan CT, Tseng LH, Shun CT, Yeh KH (2016) Case report: mismatch repair proficiency and microsatellite stability in gastric cancer may not predict programmed death-1 blockade resistance. J Hematol Oncol 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Uryvaev A, Passhak M, Hershkovits D, Sabo E, Bar-Sela G (2018) The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med Oncol 35(3):25

    Article  CAS  PubMed  Google Scholar 

  54. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA et al (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6(8):827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103

    Article  CAS  PubMed  Google Scholar 

  56. Crunkhorn S (2017) Cancer immunotherapy: targeting regulatory T cells. Nat Rev Drug Discov 16(11):754

    PubMed  Google Scholar 

  57. Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J et al (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Facciabene A, Motz GT, Coukos G (2012) T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72(9):2162–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301

    Article  CAS  PubMed  Google Scholar 

  60. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940

    Article  PubMed  PubMed Central  Google Scholar 

  61. Prat A, Navarro A, Pare L, Reguart N, Galvan P, Pascual T et al (2017) Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res 77(13):3540–3550

    Article  CAS  PubMed  Google Scholar 

  62. Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ et al (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359(6377):801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borghaei H, Langer CJ, Gadgeel S, Papadimitrakopoulou VA, Patnaik A, Powell SF et al (2019) 24-month overall survival from KEYNOTE-021 cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer. J Thorac Oncol 14(1):124–129

    Article  CAS  PubMed  Google Scholar 

  64. Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A et al (2017) Proliferation of PD-1 + CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci USA 114(19):4993–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Simeone E, Gentilcore G, Giannarelli D, Grimaldi AM, Caraco C, Curvietto M et al (2014) Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother 63(7):675–683

    Article  CAS  PubMed  Google Scholar 

  66. Ferrucci PF, Ascierto PA, Pigozzo J, Del Vecchio M, Maio M, Antonini Cappellini GC et al (2018) Baseline neutrophils and derived neutrophil-to-lymphocyte ratio: prognostic relevance in metastatic melanoma patients receiving ipilimumab. Ann Oncol 29(2):524

    Article  CAS  PubMed  Google Scholar 

  67. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D et al (2018) Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol 4(3):351–357

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fang S, Wang Y, Sui D, Liu H, Ross MI, Gershenwald JE et al (2015) C-reactive protein as a marker of melanoma progression. J Clin Oncol Off J Am Soc Clin Oncol 33(12):1389–1396

    Article  CAS  Google Scholar 

  69. Sanchez-Zauco N, Torres J, Gomez A, Camorlinga-Ponce M, Munoz-Perez L, Herrera-Goepfert R et al (2017) Circulating blood levels of IL-6, IFN-gamma, and IL-10 as potential diagnostic biomarkers in gastric cancer: a controlled study. BMC Cancer 17(1):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamazaki N, Kiyohara Y, Uhara H, Iizuka H, Uehara J, Otsuka F et al (2017) Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma. Cancer Sci 108(5):1022–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ludwig S, Floros T, Theodoraki MN, Hong CS, Jackson EK, Lang S et al (2017) Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer. Clin Cancer Res 23(16):4843–4854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 91(4):431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM (2015) Exosome mediated communication within the tumor microenvironment. J Control Release 219:278–294

    Article  CAS  PubMed  Google Scholar 

  74. Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS et al (2014) Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5(14):5439–5452

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL (2018) Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res 24(4):896–905

    Article  CAS  PubMed  Google Scholar 

  77. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20(5):548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD et al (2018) Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med 378(21):1976–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Amaria RN, Reddy SM, Tawbi HA, Davies MA, Ross MI, Glitza IC et al (2018) Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med 24(11):1649–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P et al (2018) Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med 24(11):1655–1661

    Article  CAS  PubMed  Google Scholar 

  81. Kaur P, Asea A (2012) Radiation-induced effects and the immune system in cancer. Front Oncol 2:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alizadeh D, Larmonier N (2014) Chemotherapeutic targeting of cancer-induced immunosuppressive cells. Cancer Res 74(10):2663–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ding ZC, Lu X, Yu M, Lemos H, Huang L, Chandler P et al (2014) Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1-PD-L1 axis. Cancer Res 74(13):3441–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J et al (2018) Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 379(21):2040–2051

    Article  CAS  PubMed  Google Scholar 

  85. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC (2018) Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 18(5):313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64(12):4328–4337

    Article  CAS  PubMed  Google Scholar 

  88. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74(19):5458–5468

    Article  CAS  PubMed  Google Scholar 

  89. Kang J, Demaria S, Formenti S (2016) Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer 4:51

    Article  PubMed  PubMed Central  Google Scholar 

  90. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377(20):1919–1929

    Article  CAS  PubMed  Google Scholar 

  91. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R et al (2018) Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 379(24):2342–2350

    Article  CAS  PubMed  Google Scholar 

  92. Baksh K, Weber J (2015) Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin Oncol 42(3):363–377

    Google Scholar 

  93. Larkin J, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL et al (2017) Overall survival (OS) results from a phase III trial of nivolumab (NIVO) combined with ipilimumab (IPI) in treatment-naive patients with advanced melanoma (CheckMate 067). Cancer Res 77

    Google Scholar 

  94. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Motzer RJ, Tannir NM, McDermott DF, Aren Frontera O, Melichar B, Choueiri TK et al (2018) Nivolumab plus Ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378(14):1277–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24(2):213–216

    Article  CAS  PubMed  Google Scholar 

  97. Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F et al (2012) TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS ONE 7(2):e30676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Anderson AC (2014) Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res 2(5):393–398

    Article  CAS  PubMed  Google Scholar 

  100. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184(2):747–752

    Article  CAS  PubMed  Google Scholar 

  101. Wiehagen KR, Girgis NM, Yamada DH, Smith AA, Chan SR, Grewal IS et al (2017) Combination of CD40 agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunol Res 5(12):1109–1121

    Article  CAS  PubMed  Google Scholar 

  102. Luheshi NM, Coates-Ulrichsen J, Harper J, Mullins S, Sulikowski MG, Martin P et al (2016) Transformation of the tumour microenvironment by a CD40 agonist antibody correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model. Oncotarget. 7(14):18508–18520

    Article  PubMed  PubMed Central  Google Scholar 

  103. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF (2014) Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lara P, Bauer TM, Hamid O, Smith DC, Gajewski T, Gangadhar TC et al (2017) Epacadostat plus pembrolizumab in patients with advanced RCC: Preliminary phase I/II results from ECHO-202/KEYNOTE-037. J Clin Oncol 35(15_suppl):4515–4515

    Google Scholar 

  105. Long GV, Dummer R, Hamid O, Gajewski T, Caglevic C, Dalle S et al (2018) Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: Results of the phase 3 ECHO-301/KEYNOTE-252 study. J Clin Oncol 36(15_suppl):108

    Google Scholar 

  106. Yuan J, Zhou J, Dong Z, Tandon S, Kuk D, Panageas KS et al (2014) Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res 2(2):127–132

    Article  CAS  PubMed  Google Scholar 

  107. Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T et al (2014) Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2(7):632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL et al (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212(2):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rini BI, Powles T, Chen M, Puhlmann M, Atkins MB (2017) Phase 3 KEYNOTE-426 trial: pembrolizumab (pembro) plus axitinib versus sunitinib alone in treatment-naive advanced/metastatic renal cell carcinoma (mRCC). J Clin Oncol 35(15_suppl):TPS4597–TPS

    Google Scholar 

  110. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A, Steigner J et al (2016) TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov 6(12):1366–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC et al (2015) TGFβ Is a master regulator of radiation therapy-induced antitumor immunity. Can Res 75(11):2232–2242

    Article  CAS  Google Scholar 

  113. Jang JE, Hajdu CH, Liot C, Miller G, Dustin ML, Bar-Sagi D (2017) Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep. 20(3):558–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chang DK, Peterson E, Sun J, Goudie C, Drapkin RI, Liu JF et al (2016) Anti-CCR4 monoclonal antibody enhances antitumor immunity by modulating tumor-infiltrating Tregs in an ovarian cancer xenograft humanized mouse model. Oncoimmunology 5(3):e1090075

    Article  CAS  PubMed  Google Scholar 

  115. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354(6316):1160–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P et al (2017) De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170(1):142–57 e19

    Google Scholar 

  117. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W et al (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577):249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zheng H, Zhao W, Yan C, Watson CC, Massengill M, Xie M et al (2016) HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res 22(16):4119–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC et al (2018) Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol 19(3):405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J.A., Ma, W., Yuan, J., Li, T. (2020). Translational Biomarkers and Rationale Strategies to Overcome Resistance to Immune Checkpoint Inhibitors in Solid Tumors. In: Lee, P., Marincola, F. (eds) Tumor Microenvironment. Cancer Treatment and Research, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-38862-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38862-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38861-4

  • Online ISBN: 978-3-030-38862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics