Skip to main content

Diversity of Antarctic Seaweeds

  • Chapter
  • First Online:
Antarctic Seaweeds

Abstract

Antarctica is characterized by extremes of climate and biogeographic isolation from other continents by distance, high depths, and the Antarctic Circumpolar Current. Even under these harsh conditions, macroalgae thrive in different coastal ecosystems contributing to primary production and serving as habitat and food for a variety of species of marine fauna. However, it is known that the Antarctic marine flora presents low species richness compared to other biogeographical regions: until the past decade a number of 120 Antarctic seaweeds had been reported. On the other hand, long geographical isolation and extreme climatic and oceanographic conditions justify their high degree of endemism (ca. of 33–40%). A new compilation of the Antarctic seaweed diversity is presented in this chapter, reporting a list of 151 species cited to the entire Antarctica, comprising 85 Rhodophyta, 34 Ochrophyta (Phaeophyceae and Chrysophyceae), and 32 Chlorophyta with an endemism degree of 27%, lower than in previous reports. Molecular approaches based on different markers (ITS, UPA, COI-5P) are being used to assist species identification. The collection of marine specimens in Antarctica is expensive and still very difficult, and therefore, the occurrence for many species can become inaccurate. The difficult access to samples is another limitation, which could explain that most of the best known species are concentrated around scientific stations. Consequently, the macroalgal diversity in Antarctica and its distribution is probably underestimated. A better knowledge on this diversity and its distribution is urgent, as the region is facing significant climate changes that may drive shifts on the assemblages of macroalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amsler CD, Rowley RJ, Laur DR, Quetin LB, Ross RM (1995) Vertical distribution of Antarctic peninsular macroalgae: cover, biomass and species composition. Phycologia 34:424–430

    Article  Google Scholar 

  • Barker PF, Thomas E (2003) Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci Rev 66:143–162

    Article  Google Scholar 

  • Clarke DL (1990) Arctic Ocean ice-cover; geologic history and climatic significance. In: Grantz A, Johnson L, Sweeney JL (eds) The Arctic Ocean region. The Geological Society of America, Boulder, CO, pp 53–62

    Google Scholar 

  • Clarke A, Barnes KA, Hodgson DA (2005) How isolated is Antarctica. Trends Ecol Evol 20:1–3

    Article  Google Scholar 

  • Clayton MN (1994) Evolution of Antarctic benthic algal flora. J Phycol 30:897–904

    Article  Google Scholar 

  • Clayton MN, Wiencke C, Klöser H (1997) New records of temperate and sub-Antarctic marine benthic macroalgae from Antarctica. Polar Biol 17:141–149. https://doi.org/10.1007/s003000050116

    Article  Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes DKA, Schiaparelli S, Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  • Cormaci M, Furnari G, Scammacca B (1992) The benthic algal flora of Terra Nova Bay (Ross Sea, Antarctica). Bot Mar 35:541–552

    Google Scholar 

  • Drew EA, Hastings RM (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia 31:262–277

    Article  Google Scholar 

  • Fraser CI, Morrison AK, McC Hogg A, Macaya EC, Van Sebille E, Ryan PG, Padovan A, Jack C, Valdivia N, Waters JM (2018) Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Change Lett 8:704–708. https://doi.org/10.1038/s41558-018-0209-7

    Article  Google Scholar 

  • Gallardo T, Pérez-Ruzafa IM, Flores-Moya A, Conde F (1999) New collections of benthic marine algae from Livingston and Deception Islands (South Shetland Islands) and Trinity Island (Bransfield Strait), Antarctica. Bot Mar 42:61–69. https://doi.org/10.1515/bot.1999.009

    Article  Google Scholar 

  • Gaudichaud C (1826) Botanique. In: Freycinet I (ed) Voyage au tur de monde…executé sur les corvettes de SM l’Uranie et la Physicienne pendant les années 1817–1820. Pillet Ainé, Paris

    Google Scholar 

  • Gómez I, Navarro NP, Huovinen P (2019) Bio-optical and physiological patterns in Antarctic seaweeds: a functional trait based approach to characterize vertical zonation. Prog Oceanogr 174:17–27

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org, searched on 24 August 2019

  • Hempel GV (1987) Die Polarmeere – ein biologischer Vergleich. Polarforschung 57:173–189

    Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52:509–534. https://doi.org/10.1515/bot.2009.081

    Article  Google Scholar 

  • Hughes KA, Ashton GV (2017) Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls. Aquat Conserv Mar Freshw Ecosyst 27:158–164

    Article  Google Scholar 

  • Klöser H, Quartino ML, Wiencke C (1996) Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia 333:1–17

    Article  Google Scholar 

  • Lamb I, Zimmermann MH (1977) Benthic marine algae of the Antarctic Peninsula. In: Pawson DL (ed) Biology of the Antarctic Seas V. American Geophysical Union, Antarctic Research Series. 23 (4), United States. 229 p. ISSN: 0066-4634

    Google Scholar 

  • Le Gall L, Saunders GW (2010) DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J Phycol 46:374–389

    Article  Google Scholar 

  • Medeiros AS (2013) Macroalgae diversity of Admiralty Bay, King George Island, Antarctic Peninsula based on DNA barcoding and other molecular markers. MSci Thesis, São Paulo University, p. 164. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-24032014-090801/pt-br.php

  • Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “Barcoding Gap” and leads to misidentification. Syst Biol 57:809–822

    Article  Google Scholar 

  • Moe RL (1985) Gainia and Gainiaceae: a new genus and family of crustose marine Rhodophyceae from Antarctica. Phycologia 24:419–428

    Article  Google Scholar 

  • Moe RL, Silva PC (1977) Antarctic marine flora: uniquely devoid of kelps. Science 196:1206–1208

    Article  CAS  Google Scholar 

  • Mystikou A, Peters AF, Asensi AO, Fletcher KI, Brickle P, Van West P et al (2014) Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biol 37:1607–1619. https://doi.org/10.1007/s00300-014-1547-1

    Article  Google Scholar 

  • Nedzarek A, Rakusa-Suszcewski S (2004) Decomposition of macroalgae and the release of nutrients in Admiralty Bay, King George Island, Antarctica. Polar Biosci 17:16–35

    Google Scholar 

  • Neushul M (1959) Biological collecting in Antarctic waters. Veliger 2:15–17

    Google Scholar 

  • Neushul M (1961) Diving in Antarctic water. Polar Rec 10:83–88

    Article  Google Scholar 

  • Neushul M (1963) Reproductive morphology of Antarctic kelps. Bot Mar 5:19–24

    Article  Google Scholar 

  • Neushul M (1965) Diving observation of sub-tidal Antarctic marine vegetation. Bot Mar 8:234–243

    Article  Google Scholar 

  • Neushul M (1968) Benthic marine algae. Antarctic Map Folio Ser 10:9–10

    Google Scholar 

  • Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1639–1647. https://doi.org/10.1007/s00300-009-0663-9

    Article  Google Scholar 

  • Oliveira MC, Repetti SI, Iha C, Jackson CJ, Díaz-Tapia P, Lubiana KMF, Cassano V, Costa JF, Cremen MCM, Marcelino VR, Verbruggen H (2018) High-throughput sequencing for algal systematics. Eur J Phycol 53:256–272. https://doi.org/10.1080/09670262.2018.1441446

    Article  CAS  Google Scholar 

  • Papenfuss GF (1964) Catalogue and bibliography of Antarctic and Subantarctic benthic marine algae. Antarct Res Ser 1:1–76

    Google Scholar 

  • Pellizzari F, Silva MC, Silva EM, Medeiros A, Oliveira MC, Yokoya NS et al (2017) Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biol 40:1671–1685. https://doi.org/10.1007/s00300-017-2092-5

    Article  Google Scholar 

  • Peters AF, Breeman AM (1993) Temperature tolerance and latitudinal range of brown algae from temperate Pacific South America. Mar Biol 115:143–150

    Article  Google Scholar 

  • Quartino ML, Zaixso HE, Boraso de Zaixso AL (2005) Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands, Antarctica. Bot Mar 48:187–197. https://doi.org/10.1515/BOT.2005.029

    Article  Google Scholar 

  • Ramírez ME (1982) Catálogo de las algas marinas del Territorio Chileno Antártico. Ser Cient INACh 29:39–67

    Google Scholar 

  • Sanches PF, Pellizzari FM, Horta PH (2016) Multivariate analyses of Antarctic and sub-Antarctic seaweed distribution patterns: an evaluation of the role of the Antarctic Circumpolar Current. J Sea Res 110:29–38. https://doi.org/10.1016/j.seares.2016.02.002

    Article  Google Scholar 

  • Sherwood AR, Kurihara A, Conklin KY, Sauvage T, Presting GG (2010) The Hawaiian Rhodophyta biodiversity survey (2006–2010): a summary of principal findings. BMC Plant Biol 10(258):1–29

    Google Scholar 

  • Skottsberg C (1906) Observations on the vegetations of the Antarctic Sea. Botaniska Studier tillagnade F.R. Kjelman, Uppsala, pp 245–264

    Google Scholar 

  • Skottsberg C (1941) Communities of marine algae in subantarctic and Antarctic waters. K Sven Velenslapsakad Handl Tredje Serien 19:1–92

    Google Scholar 

  • Skottsberg C (1953) On two collections of Antarctic marine algae. Arkiv Botanik 2:531–566

    Google Scholar 

  • Skottsberg C (1964) Antarctic phycology. In: Carrick R, Holgate M, Prevost J (eds) Biologie Antarctique. 1st SCAR Symposium Hermann, Paris, pp 147–154

    Google Scholar 

  • Skottsberg C, Neushul M (1960) Phyllogigas and Himantothallus. Antarctic Phaeophyceae Bot Mar 2:164–173

    Google Scholar 

  • Valdivia N, Diaz MJ, Holtheuer J, Garrido I, Huovinen P, Gómez I (2014) Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica. PLoS One 9(6):e100714. https://doi.org/10.1371/journal.pone.0100714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Article  Google Scholar 

  • Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer, Germany, pp 265–291

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic seaweeds. In: Wägele JW (ed) Synopses of the Antarctic benthos, vol 9. A.R.G. Gantner Verlag, Rugell, Lichtenstein, p 239

    Google Scholar 

  • Wiencke C, Amsler CD, Clayton MN (2014) Chapter 5.1. Macroalgae. In: DeBroyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz CD (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 66–73

    Google Scholar 

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro–and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507. https://doi.org/10.1515/bot.2009.072

    Article  Google Scholar 

  • Wynn-Williams DD (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188

    Article  CAS  Google Scholar 

  • Yoneshigue-Valentin Y, Silva IB, Fujii MT, Yokoya NS, Pupo D, Guimarães SMPB, Martins AP, Sanches PF, Pereira DC, Dalto AG, Souza JMC, Pereira CMP, Pellizzari F, Colepicolo P (2013) Marine macroalgal diversity in Admiralty Bay, King George Island, South Shetlands Islands, Antarctica. Ann Act Rep:140–148

    Google Scholar 

  • Zaneveld JS (1966) Vertical zonation of Antarctic and Subantarctic benthic marine algae. Antarct J US 1:211–213

    Google Scholar 

  • Zielinski K (1990) Bottom macroalgae of Admiralty Bay (King George Island, South Shetland Island, Antarctic). Polar Res 11:95–131

    Google Scholar 

Download references

Acknowledgments

We thank PROANTAR (Brazilian Antarctic Program 557030/2009-9, 407588/2013-2 and 442258/2018-2), INCT Criosfera 2, Brazilian Navy (Polar Ship Almirante Maximiano–H41), Brazilian Air Force, MMA (Ministry of Environment), MCTIC (Ministry of Science, Technology and Innovation), and CNPq (National Council of Research and Development; for grant 310672/2016-3 to NSY and 301491/2013-5 to MCO). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana C. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, M.C., Pellizzari, F., Medeiros, A.S., Yokoya, N.S. (2020). Diversity of Antarctic Seaweeds. In: Gómez, I., Huovinen, P. (eds) Antarctic Seaweeds. Springer, Cham. https://doi.org/10.1007/978-3-030-39448-6_2

Download citation

Publish with us

Policies and ethics