Skip to main content

Detached Seaweeds as Important Dispersal Agents Across the Southern Ocean

  • Chapter
  • First Online:
Antarctic Seaweeds

Abstract

After detachment from their substratum, many seaweeds can float or drift at the mercy of currents and winds, thereby facilitating their dispersal and connectivity. In Antarctica only one species possess floating structures (gas-filled vesicles), the brown seaweed Cystosphaera jacquinotti. However, other species such as Durvillaea antarctica and Macrocystis pyrifera that form abundant forests around the sub-Antarctic islands can also remain at the sea surface once detached, providing a potential dispersal mechanism not only for the seaweeds but also for the associated biota. Additionally, recent reports indicate that floating D. antarctica can reach the Antarctic continent from sub-Antarctic regions. Herein, we collect information about floating and drifting seaweeds in Antarctica, but also their biology, physiology, and distribution within the sub-Antarctic sources. Up to now, only a few species have been recorded floating in Antarctica, and mainly during the first Antartic explorations. So far, most of the studies on detached seaweeds only highlight their importance, when already stranded and serving as carbon sources for benthic communities. However, some seaweed species are able to handle present sea surface conditions in Antarctica and thus in the future when higher temperatures, less ice and more available substrate are available, they might be able to frequently travel and colonize this region, thereby representing an important dispersal mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abé H, Komatsu T, Kokubu Y, Alabsi N, Rothäusler E, Shishido H, Yoshizawa S, Ajisaka T (2013) Invertebrate fauna associated with floating Sargassum horneri (Fucales: Sargassaceae) in the East China Sea. Spec Diver 18(1):75–85

    Article  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1999) An antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemomes. Mar Ecol Prog Ser 183:105–114

    Article  Google Scholar 

  • Amsler CD, Mcclintock JB, Baker BJ (2012) Palatability of living and dead detached Antarctic macroalgae to consumers. Antarct Sci 24(6):589–590

    Article  Google Scholar 

  • Assmy P, Ehn JK, Fernández-Méndez M, Hop H, Katlein C, Sundfjord A, Bluhm K, Daase M, Engel A, Fransson A, Granskog MA, Hudson SR, Kristiansen S, Nicolaus M, Peeken I, Renner AHH, Spreen G, Tatarek A, Wiktor J (2013) Floating ice-algal aggregates below melting Arctic Sea ice. PLoS One 8(10):e76599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila C, Angulo-Preckler C, Martín-Martín RP, Figuerola B, Griffiths HJ, Waller CL (2020) Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island. Sci Rep 10:1639

    Google Scholar 

  • Bäck S, Lehvo A, Blomster J (2000) Mass occurrence of unattached Enteromorpha intestinalis on the Finnish Baltic Sea Coast. Ann Bot Fenn 37:155–161

    Google Scholar 

  • Barnes DKA, Linse K, Waller C, Morely S, Enderlein P, Fraser KPP, Brown M (2006) Shallow benthic fauna communities of South Georgia Island. Polar Biol 29:223–228

    Article  Google Scholar 

  • Batista MB, Batista AA, Franzan SP, Simionatto PP, Lima ST, Velez-Rubio G, Scarabino F, Camacho O, Schmitz C, Martinez A (2018) Kelps’ long-distance dispersal: role of ecological/oceanographic processes and implications to marine forest conservation. Diversity 10(11)

    Google Scholar 

  • Belt ST, Brown TA, Smik L, Assmy P, Mundy CJ (2018) Sterol identification in floating Arctic sea ice algal aggregates and the Antarctic sea ice diatom Berkeleya adeliensis. Org Geochem 118:1–3

    Article  CAS  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Google Scholar 

  • Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32(4):525–535

    Article  Google Scholar 

  • Blomster J, Maggs CA, Stanhope MJ (1998) Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British isles. J Phycol 34(2):319–340

    Article  CAS  Google Scholar 

  • Boo GH, Mansilla A, Nelson W, Bellgrove A, Boo SM (2014) Genetic connectivity between trans-oceanic populations of Capreolia implexa (Gelidiales, Rhodophyta) in cool temperate waters of Australasia and Chile. Aquat Bot 119:73–79

    Article  Google Scholar 

  • Braeckman U, Pasotti F, Vázquez S, Zacher K, Hoffmann R, Elvert M, Marchant H, Buckner C, Quartino ML, Mác Cormack W, Soetaert K, Wenzhöfer F, Vanreusel A (2019) Degradation of macroalgal detritus in shallow coastal Antarctic sediments. Limnol Oceanogr 64(4):1423–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwer PEM (1996) Decomposition in situ of the sublittoral Antarctic macroalga Desmarestia anceps Montagne. Polar Biol 16(2):129–137

    Article  Google Scholar 

  • Brouwer PEM, Geilen EFM, Gremmen NJM, van Lent F (1995) Biomass, cover and zonation patterns of sublittoral macroalgae at Signy Island, South Orkney Islands, Antarctica. Bot Mar 38:259–270

    Article  Google Scholar 

  • Campana GL, Zacher K, Fricke A, Molis M, Wulff A, Quartino ML, Wiencke C (2009) Drivers of colonization and succession in polar benthic macro- and microalgal communities. Bot Mar 52(6):655–667

    Article  Google Scholar 

  • Cefarelli AO, Vernet M, Ferrario ME (2011) Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs. Deep-Sea Res II Top Stud Oceanogr 58:1436–1450

    Article  Google Scholar 

  • Clayton MN, Wiencke C, Klöser H (1997) New records of temperate and sub Antarctic marine benthic macroalgae from Antarctica. Polar Biol 17(2):141–149

    Article  Google Scholar 

  • Cohen RA, Fong P (2004) Physiological responses of a bloom-forming green macroalga to short-term change in salinity, nutrients, and light help explain its ecological success. Estuaries 27(2):209–216

    Article  Google Scholar 

  • Coyer JA, Hoarau G, Van Schaik J, Luijckx P, Olsen JL (2011) Trans-Pacific and trans-Arctic pathways of the intertidal macroalga Fucus distichus L. reveal multiple glacial refugia and colonizations from the North Pacific to the North Atlantic. J Biogeogr 38(4):756–771

    Article  Google Scholar 

  • Cumming RA, Nikula R, Spencer HG, Waters JM (2014) Transoceanic genetic similarities of kelp-associated sea slug populations: long-distance dispersal via rafting? J Biogeogr 41(12):2357–2370

    Article  Google Scholar 

  • De Wildeman É (1935) Observations sur la algues rapporlées par l’expedition animctiq’ue de la “Belgica”. Résullanls du voyage de la “Belgica” en 897-1899. Ansvers, p. 47

    Google Scholar 

  • Drew E, Hastings R (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia 31(3–4):262–277

    Article  Google Scholar 

  • Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer-Verlag, Berlin, pp 47–66

    Chapter  Google Scholar 

  • Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23(9):609–618

    Article  Google Scholar 

  • Fischer G, Wiencke C (1992) Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar Biol 12(3):341–348

    Google Scholar 

  • Flores‐Molina MR, Rautenberger R, Muñoz P, Huovinen P, Gómez I (2016) Stress tolerance of the endemic Antarctic brown alga Desmarestia anceps to UV radiation and temperature is mediated by high concentrations of phlorotannins. Photochem Photobiol 92(3):455–466

    Google Scholar 

  • Fraser CI, Waters JM (2013) Algal parasite Herpodiscus durvillaeae (Phaeophyceae: Sphacelariales) inferred to have traversed the Pacific Ocean with its buoyant host. J Phycol 49(1):202–206

    Article  CAS  PubMed  Google Scholar 

  • Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. P Natl Acad Sci USA 106(9):3249–3253

    Article  CAS  Google Scholar 

  • Fraser CI, Thiel M, Spencer HG, Waters JM (2010) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser CI, Zuccarello GC, Spencer HG, Salvatore LC, Garcia GR, Waters JM (2013) Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the southern hemisphere. PLoS One 8(7):e69138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CI, Kay GM, Md P, Ryan PG (2017) Breaking down the barrier: dispersal across the Antarctic Polar Front. Ecography 40(1):235–237

    Article  Google Scholar 

  • Fraser CI, Morrison AK, Hogg AM, Macaya EC, van Sebille E, Ryan PG, Padovan A, Jack C, Valdivia N, Waters JM (2018) Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Chang 8(8):704

    Article  Google Scholar 

  • Gain L (1912) La flore algologique des régions antarctiques et subantarctiques.—Deuxième Expédition Antarctique Française (1908–1910) commandée par le Dr Jean Charcot: sciences naturelles. Sci Nat Doc Sci-Paris:156–218

    Google Scholar 

  • Gallardo T, Pérez-Ruzafa IM, Flores-Moya A, Conde F (1999) New collections of Benthic marine algae from Livingston and Deception Islands (South Shetland Islands) and Trinity Island (Bransfield Strait). Bot Mar 42:61–69

    Article  Google Scholar 

  • Gómez I, Wulff A, Roleda MY, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52(6):593–608

    Article  Google Scholar 

  • Gómez I, Navarro NP, Huovinen P (2019) Bio-optical and physiological patterns in Antarctic seaweeds: a functional trait based approach to characterize vertical zonation. Prog Oceanogr 174:17–27

    Article  Google Scholar 

  • Graiff A, Karsten U, Meyer S, Pfender D, Tala F, Thiel M (2013) Seasonal variation in floating persistence of detached Durvillaea antarctica (Chamisso) Hariot thalli. Bot Mar 56(1):3–14

    Article  Google Scholar 

  • Graiff A, Pantoja JF, Tala F, Thiel M (2016) Epibiont load causes sinking of viable kelp rafts: seasonal variation in floating persistence of giant kelp Macrocystis pyrifera. Mar Biol 163(9):191

    Article  Google Scholar 

  • Guillemin M-L, Valero M, Faugeron S, Nelson W, Destombe C (2014) Tracing the trans-pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PLoS One 9(12):e114039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Häder D-P, Lebert M, Helbling EW (2001) Effects of solar radiation on the Patagonian macroalga Enteromorpha linza (L.) J. Agardh — Chlorophyceae. J Photochem Photobiol B Biol 62(1):43–54

    Article  Google Scholar 

  • Hernández-Carmona G, Hughes B, Graham MH (2006) Reproductive longevity of drifting kelp Macrocystis pyrifera (Phaeophyceae) in Monterey Bay, USA. J Phycol 42(6):1199–1207

    Article  Google Scholar 

  • Hinojosa IA, Boltaña S, Macaya E, Ugalde P, Valdivia N, Vásquez N, Newman W, Thiel M (2006) Geographic distribution and description of four pelagic barnacles along the south east Pacific coast of Chile – a zoogeographical approximation. Rev Chil Hist Nat. 78: 603–614.

    Google Scholar 

  • Hobday A (2000) Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. J Exp Mar Biol Ecol 253:97–114

    Article  CAS  PubMed  Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52(6): 509–534

    Google Scholar 

  • Hooker JD (1844) The botany of the Antarctic voyage of H. M. discovery ships Erebus and Terror in the years 18391843, vol. 1, Flora Antarctica, Part 1 Botany of Lord Auklands Group and Campbell’s Island, Part 2 Botany of Fuegia, The Falklands, Kerguelens Land. Reeve Brothers, London

    Google Scholar 

  • Huang Y, Amsler M, McClintock J, Amsler C, Baker B (2007) Patterns of gammarid amphipod abundance and species composition associated with dominant subtidal macroalgae along the western Antarctic Peninsula. Polar Biol 30:1417–1430

    Article  Google Scholar 

  • Huovinen P, Gómez I (2013) Photosynthetic characteristics and UV stress tolerance of Antarctic seaweeds along the depth gradient. Polar Biol 36(9):1319–1332

    Article  Google Scholar 

  • Huovinen P, Gómez I (2015) UV Sensitivity of vegetative and reproductive tissues of two Antarctic brown algae is related to differential allocation of phenolic substances. Photochem Photobiol 91(6):1382–1388

    Article  CAS  PubMed  Google Scholar 

  • Iken K, Amsler CD, Hubbard JM, McClintock JB, Baker BJ (2007) Allocation patterns of phlorotannins in Antarctic brown algae. Phycologia 46(4):386–395

    Article  Google Scholar 

  • Ingólfsson A (1998) Dynamic of macrofaunal communities of floating seaweed clumps off western Iceland: a study of patches on the surface of the sea. J Exp Mar Biol Ecol 23:119–137

    Article  Google Scholar 

  • Kang J-S, Kang S-H, Lee JH, Lee S (2002) Seasonal variation of microalgal assemblages at a fixed station in King George Island, Antarctica, 1996. Mar Ecol Prog Ser 229:19–32

    Article  Google Scholar 

  • Katlein C, Fernández-Méndez M, Wenzhöfer F, Nicolaus M (2015) Distribution of algal aggregates under summer sea ice in the Central Arctic. Polar Biol 38:719–731

    Article  PubMed  Google Scholar 

  • Khalaman V, Berger VY (2006) Floating seaweeds and associated fauna in the White Sea. Oceanology 46:827–833

    Article  Google Scholar 

  • Klöser H, Ferreyra G, Schloss I, Mercuri G, Laturnus F, Curtosi A (1993) Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands). J Mar Syst 4(4):289–301

    Article  Google Scholar 

  • Lastra M, Rodil IF, Sánchez-Mata A, García-Gallego M, Mora J (2014) Fate and processing of macroalgal wrack subsidies in beaches of Deception Island, Antarctic Peninsula. J Sea Res 88:1–10

    Article  Google Scholar 

  • Lizée-Prynne D, López B, Tala F, Thiel M (2016) No sex-related dispersal limitation in a dioecious, oceanic long-distance traveller: the bull kelp Durvillaea antarctica. Bot Mar 59(1):39–50

    Article  Google Scholar 

  • López BA, Macaya EC, Rivadeneira MM, Tala F, Tellier F, Thiel M (2018) Epibiont communities on stranded kelp rafts of Durvillaea antarctica (Fucales, Phaeophyceae)–do positive interactions facilitate range extensions? J Biogeogr 45(8):1833–1845

    Article  Google Scholar 

  • Macaya EC, Zuccarello GC (2010) DNA Barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales). J Phycol 46(4):736–742

    Article  CAS  Google Scholar 

  • Macaya EC, Boltana S, Hinojosa IA, Macchiavello JE, Valdivia NA, Vásquez NR, Buschmann AH, Vásquez JA, Vega JMA, Thiel M (2005) Presence of sporophylls in floating kelp rafts of Macrocystis spp. (Phaeophyceae) along the Chilean Pacific coast. J Phycol 41(5):913–922

    Google Scholar 

  • Macaya EC, López B, Tala F, Tellier F, Thiel M (2016) Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In: Hu ZM, Fraser C (eds) Seaweed phylogeography. Springer, pp 97–130

    Google Scholar 

  • McKenzie PF, Bellgrove A (2008) Dispersal of Hormosira banksii (Phaeophyceae) via detached fragments: reproductive viability and longevity. J Phycol 44(5):1108–1115

    Article  PubMed  Google Scholar 

  • Mélice J, Lutjeharms J, Rouault M, Ansorge I (2003) Sea-surface temperatures at the sub-Antarctic islands Marion and Gough during the past 50 years. S Afr J Sci 99(7–8):363–366

    Google Scholar 

  • Miller KA, Pearse JS (1991) Ecological studies of seaweeds in McMurdo Sound, Antarctica. Am Zool 31:35–48

    Article  Google Scholar 

  • Montagne JFC (1842) Prodromus generum specierumque phycearum novarum, in itinere ad polum antarcticum...ab illustri Dumont d’Urville peracto collectarum, notis diagnosticis tantum huc evulgatarum, descriptionibus verò fusioribus nec non iconibus analyticis iam iamque illustrandarum. Paris apud Gide, editorem, Parisiis, pp. 1–16

    Google Scholar 

  • Moon KL, Chown SL, Fraser CI (2017) Reconsidering connectivity in the sub-Antarctic. Biol Rev 92(4):2164–2181

    Article  PubMed  Google Scholar 

  • Müller DG, Westermeier R, Peters A, Boland W (1990) Sexual reproduction of the Antarctic brown alga Ascoseira mirabilis (Ascoseirales, Phaeophyceae). Bot Mar 33:251–255

    Article  Google Scholar 

  • Müller DG, Ramírez ME, Westermeier R (1992) Utriculidium durvillei (Bory?) Skottsberg en isla Rey Jorge, Antártica. Ser Cien INACH 42:47–52

    Google Scholar 

  • Neushul M (1963) Reproductive morphology of Antarctic kelps. Bot Mar 5:19–24

    Article  Google Scholar 

  • Neushul M (1965) Diving observations of subtidal Antarctic marine vegetation. Bol Mar 8(2–4):234–243

    Google Scholar 

  • Nikula R, Fraser CI, Spencer HG, Waters JM (2010) Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Mar Ecol Prog Ser 405:221–230

    Article  CAS  Google Scholar 

  • Nikula R, Spencer HG, Waters JM (2013) Passive rafting is a powerful driver of transoceanic gene flow. Biol Lett 9(1):20120821

    Article  PubMed  PubMed Central  Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Funnell GA, Schwarz A-M, Andrew NL, Hawes I (2004) Ecological role of Phyllophora antarctica drift accumulations in coastal soft-sediment communities of McMurdo Sound, Antarctica. Polar Biol 27(8):482–494

    Google Scholar 

  • O’Connor MI (2009) Warming strengthens an herbivore-plant interaction. Ecology 90:388–398. https://doi.org/10.1890/08-0034.1

    Article  PubMed  Google Scholar 

  • Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32(11):1639–1647

    Article  Google Scholar 

  • Pellizzari F, Silva MC, Silva EM, Medeiros A, Oliveira MC, Yokoya NS, Pupo D, Rosa LH, Colepicolo P (2017) Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biol 40:1671–1685

    Article  Google Scholar 

  • Quartino ML, Zaixso HE, Boraso de Zaixso AL (2005) Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands, Antarctica. Bot Mar 48(3):187–197

    Google Scholar 

  • Rakusa-Suszczewski S (1980) Environmental conditions and the functioning of Admiralty Bay (South Shetland Islands) as part of the near shore Antarctic ecosystem. Pol Polar Res 1:11–27

    Google Scholar 

  • Rakusa-Suszczewski S (1995) Flow of matter in the Admiralty Bay area, King George Island, Maritime Antarctic. Proc NIPR Symp Polar Biol 8:101–113

    Google Scholar 

  • Rautenberger R, Huovinen P, Gómez I (2015) Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae. Mar Biol 162(5):1087–1097

    Article  CAS  Google Scholar 

  • Richardson MG (1979) The distribution of Antarctic marine macro-algae related to depth and substrate. Br Antarct Surv Bull 49:1–13

    Google Scholar 

  • Ross JC (1847) A voyage of discovery and research in the Southern and Antarctic Regions, during the Years 1839–43, vol 2. John Murray

    Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2009) Effect of temperature and grazing on growth and reproduction of floating Macrocystis spp.(Phaeophyceae) along a latitudinal gradient. J Phycol 45(3):547–559

    Article  PubMed  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Miranda L, Tala F, Thiel M (2011a) Kelp rafts in the Humboldt Current: interplay of abiotic and biotic factors limit their floating persistence and dispersal potential. Limnol Oceanogr 56(5):1751–1763

    Article  Google Scholar 

  • Rothäusler E, Gomez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2011b) Physiological performance of floating giant kelp Macrocystis pyrifera (Phaeophyceae): latitudinal variability in the effects of temperature and grazing. J Phycol 47(2):269–281

    Article  PubMed  Google Scholar 

  • Rothäusler E, Gomez I, Karsten U, Tala F, Thiel M (2011c) Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405(1–2):33–41

    Article  Google Scholar 

  • Rothäusler E, Gutow L, Thiel M (2012) Floating seaweeds and their communities. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer-Verlag, Berlin, pp 359–380

    Google Scholar 

  • Rothäusler E, Reinwald H, López BA, Tala F, Thiel M (2018) High acclimation potential in floating Macrocystis pyrifera to abiotic conditions even under grazing pressure–a field study. J Phycol 54(3):368–379

    Article  PubMed  Google Scholar 

  • Santelices B (1990) Patterns of reproduction dispersal and recruitment in seaweeds. Oceanogr Mar Biol Ann Rev 28:177–276

    Google Scholar 

  • Sato T, Sakurai H, Takasaki A, Watanabe K, Hirano Y (1992) Underwater observation of Antarctic fishes and invertebrates with a note on collecting and transportation techniques for research and exhibition in the aquarium. Ser Cient INACH 42:95–103

    Google Scholar 

  • Schwarz A-M, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26(12):789–799

    Article  Google Scholar 

  • Skottsberg K (1907) Zur Kenntnis der subantarktischen und antarktischen Meeresalgen. I. Phaeophyceen. In: Nordenskjöld O (ed) Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901–1903, vol 4: 1. Lithographisches Institut des Generalstabs, Stockholm, pp 1–172

    Google Scholar 

  • Smith SDA (2002) Kelp rafts in the Southern Ocean. Glob Ecol Biogeogr 11(1):67–69

    Article  Google Scholar 

  • Stachowicz JJ, Fried H, Osman RW, Whitlatch RB (2002) Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83(9):2575–2590

    Article  Google Scholar 

  • Tada S, Sato T, Sakurai H, Arai H, Kimpara I, Kodama M (1996) Benthos and fish community associated with clumps of submerged drifting algae in Fildes Bay, King George Island, Antarctica. Proc NIPR Symp Polar Biol 9:243–251

    Google Scholar 

  • Tala F, Gómez I, Luna-Jorquera G, Thiel M (2013) Morphological, physiological and reproductive conditions of rafting bull kelp (Durvillaea antarctica) in northern-central Chile (30º S). Mar Biol 160(6):1339–1351

    Google Scholar 

  • Tala F, Velásquez M, Mansilla A, Macaya EC, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the South-East Pacific. J Exp Mar Biol Ecol 483:31–41

    Article  Google Scholar 

  • Tala F, López BA, Velásquez M, Jeldres R, Macaya EC, Mansilla A, Ojeda J, Thiel M (2019) Long-term persistence of the floating bull kelp Durvillaea antarctica from the South-East Pacific: potential contribution to local and transoceanic connectivity. Mar Environ Res 149:67–79

    Article  CAS  PubMed  Google Scholar 

  • Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr Mar Biol Ann Rev 42:181–263

    Google Scholar 

  • Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol Ann Rev 43:279–418

    Google Scholar 

  • Valdivia N, Díaz MJ, Holtheuer J, Garrido I, Huovinen P, Gómez I (2014) Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica. PLoS One 9(6)

    Google Scholar 

  • Vandendriessche S, Messiaen M, O’Flynn S, Vincx M, Degraer S (2007a) Hiding and feeding in floating seaweed: floating seaweed clumps as possible refuges or feeding grounds for fishes. Estuar Coast Shelf Sci 71(3–4):691–703

    Article  Google Scholar 

  • Vandendriessche S, Vincx M, Degraer S (2007b) Floating seaweed and the influences of temperature, grazing and clump size on raft longevity—a microcosm study. J Exp Mar Biol Ecol 343(1):64–73

    Article  Google Scholar 

  • Waters JM, Fraser CI, Hewitt GM (2013) Founder takes all: density-dependent processes structure biodversity. Trends Ecol Evol 28(2):78–85

    Article  PubMed  Google Scholar 

  • Webster W (1834) Narrative of a voyage to the southern Atlantic Ocean in the years 1828, 29, 30, performed in HM sloop Chanticleer under the command of the late Captain Henry Foster, FRS & c. vol II. London, Richard Bentley, 1–398

    Google Scholar 

  • Westermeier R, Gómez I, Rivera PJ, Müller DG (1992) Macroalgas marinas antárticas: distribución, abundancia y necromasa en isla Rey Jorge, ShetIand del Sur, Antártica Ser. Cient INACH 42:21–34

    Google Scholar 

  • Weykam G, Gómez I, Wiencke C, Iken K, Klöser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22

    Article  Google Scholar 

  • Wichmann CS, Hinojosa IA, Thiel M (2012) Floating kelps in Patagonian Fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar Biol 159(9):2035–2049

    Article  CAS  Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Acta 106(1):78–87

    Article  Google Scholar 

  • Wulff A, Iken K, Quartino M, Al-Handal A, Wiencke C, Clayton M (2009) Biodiversity, biogeography and zonation of marine benthic micro-and macroalgae in the Arctic and Antarctic. Bot Mar 56:491–507

    Google Scholar 

  • Zacher K, Roleda MY, Hanelt D, Wiencke C (2007) UV effects on photosynthesis and DNA in propagules of three Antarctic seaweeds (Adenocystis utricularis, Monostroma hariotii and Porphyra endiviifolium). Planta 225(6):1505–1516

    Article  CAS  PubMed  Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2009) The abiotic environment of polar marine benthic algae. Bot Mar 52(6):483–490

    Article  Google Scholar 

  • Zemko K, Pabis K, Siciński J, Błażewicz-Paszkowycz M (2015) Diversity and abundance of isopod fauna associated with holdfasts of the brown alga Himantothallus grandifolius in Admiralty Bay, Antarctic. J Pol Polar Res 36(4):405–415

    Article  Google Scholar 

  • Zielinski K (1981) Benthic macroalgae of Admiralty Bay (King George Island, South Shetland Islands) and circulation of algal matter between the water and the shore. J Pol Polar Res 2(3–4):71–94

    Google Scholar 

  • Zielinski K (1990) Bottom macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica). J Pol Polar Res 11:95–131

    Google Scholar 

Download references

Acknowledgements

We thank the editors for inviting us to contribute to this review. Financial support was received through Fondap-IDEAL grant 15150003 to ECM and FONDECYT grant 1131023 to FT and ECM, CONICYT PAI (Chile) 79160069 to FT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erasmo C. Macaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macaya, E.C., Tala, F., Hinojosa, I.A., Rothäusler, E. (2020). Detached Seaweeds as Important Dispersal Agents Across the Southern Ocean. In: Gómez, I., Huovinen, P. (eds) Antarctic Seaweeds. Springer, Cham. https://doi.org/10.1007/978-3-030-39448-6_4

Download citation

Publish with us

Policies and ethics