Skip to main content

Characterising Contrast Agents for Magnetic Resonance Imaging

  • Chapter
  • First Online:
Electron Paramagnetic Resonance Spectroscopy
  • 1016 Accesses

Abstract

In Magnetic Resonance Imaging (MRI), complexes of Gd3+ are very often used as contrast agents to locally accelerate relaxation of water protons. The theoretical models developed to quantitatively describe this phenomenon involve parameters which determine the spin-lattice relaxation for the complexes. Their values can be obtained by simulating a series of EPR spectra recorded at different frequencies over a range of temperatures. These studies reveal the factors determining the efficacy of the complexes and can be used to optimise their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abragam A. (1983) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  • Aimé S. et al. (2005) Advances in Inorganic Chemistry 57: 173-237.

    Google Scholar 

  • Aimé S. et al. (2002) Angewandte Chemie International Edition 41: 1017-1019.

    Google Scholar 

  • Alpoim M.C. et al. (1992) Journal of the Chemical Society, Dalton Transaction: 463-467.

    Google Scholar 

  • Ananta J.S. et al. (2010) Nature Nanotechnologies 5: 815-821.

    Google Scholar 

  • Avenado S. et al. (2007) Chemical Communications 45: 4726-4728.

    Google Scholar 

  • Ayant Y. et al. (1975) Journal de Physique (Paris) 36: 991-1004.

    Google Scholar 

  • Belorizky E. et al. (2008) Journal of Chemical Physics 128: 052315, 1-17.

    Google Scholar 

  • Bertini I. et al. (2001) Solution NMR of Paramagnetic Molecules, Elsevier, Amsterdam.

    Google Scholar 

  • Bonnet C.S. et al. (2008) Journal of the American Chemical Society 130: 10401-10413.

    Google Scholar 

  • Bonnet C.S. et al. (2010) Journal of Physical Chemistry B 114: 8770-8781.

    Google Scholar 

  • Borel A. et al. (2002) Journal of Physical Chemistry A 106: 6229-6231.

    Google Scholar 

  • Borel A. et al. (2006) Journal of Physical Chemistry A 110: 12434-12438.

    Google Scholar 

  • Callaghan P.T. (2003) Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press, New York.

    Google Scholar 

  • Canet D. (1996) Nuclear Magnetic Resonance: concepts and methods, Wiley, New-York.

    Google Scholar 

  • Caravan P. (2009) Account of Chemical Research 42: 851-862.

    Article  Google Scholar 

  • Caravan P. (2006) Chemical Society Review 35: 512-523.

    Google Scholar 

  • Chang C.A. et al. (1990) Inorganic Chemistry 29: 4468-4473.

    Google Scholar 

  • Correas J.M. et al. (2009) Nouvelles recommandations pour l’utilisation des agents de contraste ultrasonores: mise à jour 2008; Elsevier Masson SAS: Issy-les-Moulineaux, France.

    Google Scholar 

  • De Leon-Rodriguez L.M. et al. (2009) Account of Chemical Research 42: 948-957.

    Google Scholar 

  • Fries P.H. & Belorizky E. (2007) Journal of Chemical Physics 126: 204503, 1-13.

    Google Scholar 

  • Fries P.H. & Belorizky E. (2010) Journal of Chemical Physics 133: 0244504, 1-6.

    Google Scholar 

  • Fries P.H. & Belorizky E. (2012) Journal of Chemical Physics 136: 074513, 1-10.

    Google Scholar 

  • Gierer A. & Wirtz K. (1953) Zeitshrift für Naturforschung A: Physical Science 8: 532-538.

    Google Scholar 

  • Helm L. (2006) Progress in Nuclear Magnetic Resonance Spectroscopy 49: 45-64.

    Google Scholar 

  • Horrocks W.D. et al. (1979) Journal of the American Chemical Society 101: 334-340.

    Google Scholar 

  • Hwang L.P. & Freed J.H. (1975) Journal of Chemical Physics 63: 4017-4025.

    Google Scholar 

  • Kiricuta I.C. & Simplaceanu V. (1975) Cancer Research 35: 1164-1167.

    Google Scholar 

  • Korb J.P. & Bryant R.G. (2005) Advances in Inorganic Chemistry 57: 293-326.

    Google Scholar 

  • Kowalewski J. & Maler L. (2006) Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications, Taylor & Francis, Londres.

    Google Scholar 

  • Lahrech H. et al. (2008) Journal of Cerebral Blood Flow and Metabolism 28: 1017-1029.

    Google Scholar 

  • Ledley R.S. et al. (1974) Science 186: 207-212.

    Google Scholar 

  • Luz Z. & Meiboom S. (1964) Journal of Chemical Physics 40: 2686-2692.

    Google Scholar 

  • Mansfield P. & Pykett I.L. (1978) Journal of Magnetic Resonance 29: 355-373.

    Google Scholar 

  • McLachlan A.D. (1964) Proceedings of the Royal Society of London Series A 280: 271-288.

    Google Scholar 

  • Merbach A.E. & Toth E. (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Wiley, New York.

    Google Scholar 

  • Messiah A. (2014) Quantum Mechanics ICS, Dover Publications, New-York.

    Google Scholar 

  • Parker D. & Williams J.A.G. (1996) Journal of the Chemical Society, Dalton Transaction 18: 3613-3628.

    Google Scholar 

  • Powell D.H. et al. (1996) Journal of the American Chemical Society 118: 9333-9346.

    Google Scholar 

  • Rast S. et al. (2000) Journal of Chemical Physics 113: 8724-8735.

    Google Scholar 

  • Rast S. et al. (2001) Journal of the American Chemical Society 123: 2637-2644.

    Google Scholar 

  • Rast S. et al. (2001) Journal of Chemical Physics 115: 7554-7563.

    Google Scholar 

  • Solomon I. (1955) Physical Review 99: 559-565.

    Article  ADS  Google Scholar 

  • Tadamura E. et al. (1997) Journal of Magnetic Resonance Imaging 7: 220-225.

    Google Scholar 

  • Torrey H.C. (1953) Physical Review 92: 962-969.

    Article  ADS  Google Scholar 

  • Vander Elst L. (2003) European Journal of Inorganic Chemistry 13: 2495-2501.

    Article  Google Scholar 

  • Vasalatiy O. et al. (2006) Contrast Media Molecular Imaging 1: 10-14.

    Google Scholar 

  • Vigouroux C. et al. (1999) The European Physical Journal D 5: 243-255.

    Google Scholar 

  • Volume 1: Bertrand P. (2020) Electron Paramagnetic Resonance Spectroscopy - Fundamentals, Springer, Heidelberg.

    Google Scholar 

  • Vymazal J. et al. (1999) Radiology 211: 489-495.

    Google Scholar 

  • Yazyev O.V. & Helm L. (2008) European Journal of Inorganic Chemistry 2: 201-211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belorizky, E., Fries, P.H. (2020). Characterising Contrast Agents for Magnetic Resonance Imaging. In: Electron Paramagnetic Resonance Spectroscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-39668-8_11

Download citation

Publish with us

Policies and ethics