Skip to main content

Drag Reducing Agents: A Historical Perspective

  • Chapter
  • First Online:
Rheology of Drag Reducing Fluids
  • 420 Accesses

Abstract

Chapter 1 gives a general overview about different types of drag reducing agents, such as polymers, solid-particle suspensions, biological additives, and surfactants. It reviews past work on this subject and provides a historical perspective about this phenomenon. The chapter also discusses the proposed theories of drag reduction indicating how the extent of drag reduction lies between the Blasius line and the maximum drag reduction asymptote. An attempt has been made to illustrate the various approaches to a rational explanation of the drag reduction phenomenon by the different schools of thought. Though none of the explanations are complete in themselves, each embodies an element of truth which cannot simply be disregarded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal, S. H., & Porter, R. S. (1980). Shear degradation of poly(vinyl acetate) in toluene solutions by high-speed stirring. Journal of Applied Polymer Science, 25(2), 173–185.

    Article  Google Scholar 

  • Agoston, G. A., Harte, H. W., Hottel, H. C., Klemm, W. A., Mysels, K. J., Pomeroy, H. H., et al. (1954). Flow of gasoline thickened by napalm. Industrial and Engineering Chemistry, 46(5), 1017–1019.

    Article  Google Scholar 

  • Ahrnborn, L., & Hagstrand, U. (1977). Toms effect in district heating tube systems. Studsvik Report SVF-50 in Swedish.

    Google Scholar 

  • Arranga, A. B. (1970). Friction reduction Charcteristics of fibrous and colloidal substances. Nature, 225(5231), 447–449.

    Article  Google Scholar 

  • Astarita, G. (1965). Possible interpretation of the mechanism of drag reduction in viscoelastic liquids. Industrial & Engineering Chemistry Fundamentals, 4(3), 354–356.

    Article  Google Scholar 

  • Baker, H. R., Bolster, N. N., & Little, R. C. (1970). Association colloids in nonaqueous fluids – viscosity and drag reduction characteristics. Industrial & Engineering Chemistry Product Research and Development, 9(4), 541–548.

    Article  Google Scholar 

  • Balakrishnan, C., & Gordon, R. J. (1971). A new viscoelastic phenomenon with significance in turbulent drag reduction. Nature Physical Sciences, 231, 177–180.

    Article  Google Scholar 

  • Banijamali, S. H., Merrill, E. W., Smith, K. A., & Peebles Jr., L. H. (1974). Turbulent drag reduction by Polyacrylic acid. AICHE Journal, 20(4), 824–827.

    Article  Google Scholar 

  • Barker, S. J. (1973). Radiated noise from turbulent boundary layers in dilute polymer solutions. Physics Fluids, 16(9), 1387–1394.

    Article  Google Scholar 

  • Barnes, H. A., & Walters, K. (1968). Dynamic similarity and drag reduction in flow of elastic liquids through curved pipes. Nature, 219(5149), 57–59.

    Article  Google Scholar 

  • Barnes, H. A., & Walters, K. (1969). On the flow of viscous and elastico-viscous liquids through straight and curved pipes. Proceedings of the Royal Society of London, 314(1516), 85.

    Google Scholar 

  • Beattie, D. R. (1974). Drag reduction phenomena in gas-liquid systems. In Proc. intern. conf. on drag reduction. Cambridge, UK.

    Google Scholar 

  • Becher, P. (1967). In M. J. Schick (Ed.), Nonionic surfactants, micelle formation in aqueous and nonaqueous solutions (p. 496). New York: Marcel Dekker.

    Google Scholar 

  • Belokon, V. S., & Kalashnikov, V. N. (1971). Polymer additives and turbulent friction near rough surfaces. Nature Physical Sciences, 229(2), 55–56.

    Article  Google Scholar 

  • Berman, N. S. (1977). Drag reduction of the highest molecular weight fractions of polyethylene oxide. Physics of Fluids, 20(5), 715–718.

    Article  Google Scholar 

  • Berman, N. S. (1978). Drag reduction by polymers. The Annual Review of Fluid Mechanics, 10, 47–64.

    Article  MATH  Google Scholar 

  • Berman, N. S. (1980). Evidence of molecular interactions in drag reduction in turbulent pipe flows. Polymer Engineering & Science, 20(7), 451–455.

    Article  Google Scholar 

  • Bilgen, E. (1971). Fifth intern. conf. on fluid scaling. H4. Coventry, UK: University of Warwick.

    Google Scholar 

  • Bilgen, E., & Boulos, R. (1972). Turbulent flow of drag reducing fluids between concentric rotating cylinders. Transactions of the American Society of Mechanical Engineers, 1, 25–30.

    Google Scholar 

  • Bilgen, E., & Boulos, R. (1973). Friction reduction by chemical additives in the turbulent flow of fibre suspensions. The Canadian Journal of Chemical Engineering, 51(4), 405–411.

    Article  Google Scholar 

  • Bilgen, E., & Vasseur, P. (1974). On the friction reducing non-Newtonian flow around an enclosed disk. Transactions ASME Journal of Applied Mechanics, 41(1), 45–50.

    Article  Google Scholar 

  • Black, T. J. (1969). Viscous drag reduction examined in the light of a new model of wall turbulence. In C. S. Wells (Ed.), Viscous drag reduction (pp. 383–407). New York: Plenum Press.

    Chapter  Google Scholar 

  • Blatch, N. S. (1906). Water filtration at Washington D. C. Transactions ASCE, 57, 400–408.

    Google Scholar 

  • Block, H., Morgan, A. M., & Walker, S. M. (1974). The reduction of turbulent drag and the degradation of polystyrene in toluene. In Intern. conf. on drag reduction. Cambridge, UK.

    Google Scholar 

  • Bobkowicz, A. J., & Gauvin, W. H. (1965). Turbulent flow characteristics of model fiber suspension. The Canadian Journal of Chemical Engineering, 43(2), 87–91.

    Article  Google Scholar 

  • Boggs, F. W., & Thompson, J. (1967). Flow properties of dilute solutions of polymer, part I – Mechanism of drag reduction, and part III – Effect of solute on turbulent field. US Rubber Co. Research Center Report on Contract Nos. Nonr-3120(00) and N00014-66-C0332.

    Google Scholar 

  • Booij, H. L. (1949). In H. R. Kruyt. Colloid science II, association colloids, Ch. 14, Elsevier Publishing Company, Amsterdam, pp. 681–722.

    Google Scholar 

  • Brady, A. P. (1949). The diffuse ionic layer in relation to lamellar micelles in aqueous solutions of colloidal electrolytes. The Journal of Chemical Physics, 53(6), 947–955.

    Article  Google Scholar 

  • Brautlecht, C. A., & Sethi, J. R. (1933). Flow of paper pulps in pipelines. Industrial and Engineering Chemistry, 25(3), 283–288.

    Article  Google Scholar 

  • Brecht, W., & Heller, H. (1935). Der rohrreibungsverlust von stoffaufschwemmungen. Wochenblatt für Papierfabrikation, 16, 264, 342, 380, 439, 474, 529, 587, 641, 714, 747.

    Google Scholar 

  • Brennan, C. (1970). Some cavitation experiments with dilute polymer solutions. Journal of Fluid Mechanics, 44(1), 51–63.

    Article  Google Scholar 

  • Brostow, W. (1983). Drag reduction and mechanical degradation in polymer solutions in flow. Polymer, 24(5), 631–638.

    Article  Google Scholar 

  • Bugliarello, G., & Daily, J. W. (1961). Rheological models and laminar shear flow of fiber suspensions. TAPPI, 44, 881–893.

    Google Scholar 

  • Burger, E. D., Chorn, L. G., & Perkins, T. K. (1980). Studies of drag reduction conducted over a broad range of pipeline conditions when flowing Prudhoe Bay crude-oil. Journal of Rheology, 24(5), 603–626.

    Article  Google Scholar 

  • Burger, E. D., Munk, W. R., & Wahl, H. A. (1980). Flow increase in the trans Alaska pipeline using a polymeric drag reducing additive. Paper SPE 9419, 55th Annual Fall Conference of Society of Petroleum Engineers of AIME. Dallas, TX, September 21–24.

    Google Scholar 

  • Canham, H. J., Catchpole, J. P., & Long, R. F. (1971). Boundary layer additives to reduce ship resistance. The Naval Architect Journal, 2, 187–213.

    Google Scholar 

  • Castro, W. E., & Neuwirth, J. G. (1971). Reducing fluid friction with okra. Chemische Technik, 1, 697.

    Google Scholar 

  • Chang, H. F., & Darby, R. (1983). Effect of shear degradation on the rheological properties of dilute drag-reducing polymer solutions. Journal of Rheology, 27(1), 77–88.

    Article  Google Scholar 

  • Chashehin, I. P., Shalavin, N. T., & Saenko, V. A. (1975). Effect of polymeric additives on drag reduction. International Journal of Chemical Engineering, 15, 88.

    Google Scholar 

  • Chhabra, R. P., Uhlherr, P. H., & Boger, D. V. (1980). The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere. Journal of Non-Newtonian Fluid Mechanics, 6(3–4), 187–199.

    Article  Google Scholar 

  • Corino, E. R., & Brodkey, R. S. (1969). A visual investigation of the wall region in turbulent flow. Journal of Fluid Mechanics, 37(1), 1–30.

    Article  Google Scholar 

  • Corredor, F. E., Bizhani, M., & Kuru, E. (2015). Experimental investigation of drag reducing fluid flow in annular geometry using particle image velocimetry technique. Transactions ASME Journal Fluid Engineering (online), 137(8), 08113 (16).

    Google Scholar 

  • Cottrell, F. R., Merrill, E. W., & Smith, K. A. (1969). Conformation of polyisobutylene in dilute solution subjected to a hydrodynamic shear field. Journal of Polymer Science Series A-2, 7(8), 1415–1434.

    Google Scholar 

  • Cottrell, F. R., Merrill, E. W., & Smith, K. A. (1970). Intrinsic viscosity and axial extension ratio of random coiling macromolecules in a hydrodynamic shear field. Journal of Polymer Science Series A-2, 8(2), 289–294.

    Article  Google Scholar 

  • Cox, L. R., North, A. M., & Dunlop, E. H. (1974). Intern. conf. on drag reduction. Cambridge, UK: BHRA.

    Google Scholar 

  • Daily, J. W., & Bugliarello, G. (1961). Basic data for dilute fiber suspensionsin uniform flow with shear. TAPPI, 44, 497–512.

    Google Scholar 

  • Darby, R. (1972). A review and evaluation of drag reduction theories. Naval Research Lab., NRL Memo Report 2446.

    Google Scholar 

  • Davies, G. A., & Ponter, A. B. (1966). Turbulent flow properties of dilute polymer solutions. Nature, 212(5057), 66.

    Article  Google Scholar 

  • Debye, P., & Anacker, E. W. (1951). Micelle shape from disymmetry measurements. The Journal of Physical and Colloid Chemistry, 55(5), 644–655.

    Article  Google Scholar 

  • Denn, M. M., & Roisman, J. J. (1969). Rotational stability and measurement of normal stress functions in dilute polymer solutions. AICHE Journal, 15(3), 454–459.

    Article  Google Scholar 

  • Dever, C. D., Harbour, R. J., & Siefert, W. F. (1962). Method of decreasing friction loss in flowing liquids. US Patent 3,023,760.

    Google Scholar 

  • Dodge, D. W., & Metzner, A. B. (1959). Turbulent flow of non-newtonian systems. AICHE Journal, 5(2), 189–204.

    Article  Google Scholar 

  • Dove, H. L. (1966). The effect on resistance of polymer additives injected into a boundary layer of a frigate model. In Proc. 11th intern. towing tank conf. Tokyo, Japan.

    Google Scholar 

  • Eckelmann, H. (1973). Bericht Nr (p. 101). Gottingen, Germany: Max-Planck-Institut fur Stromungsforchung.

    Google Scholar 

  • Eissenberg, D. M. (1964). Measurement and correlation of turbulent friction factors of thoria suspensions at elevated temperatures. AICHE Journal, 10(3), 403–407.

    Article  Google Scholar 

  • Elata, C., & Poreh, M. (1966). Momentum transfer in turbulent shear flow of an elastico-viscous fluid. Rheologica Acta, 5(2), 148–151.

    Article  Google Scholar 

  • Elata, C., & Tirosh, J. (1965). Frictional drag reduction. Israel Journal of Technology, 3(1), 1–6.

    Article  Google Scholar 

  • Elias, V., & Vocel, J. (1978). Vodohospodarsky eas. SAV, 26, 610.

    Google Scholar 

  • Elliot, J. H., & Stow, F. S. (1971). Solutions of drag-reducing polymers – diameter effect and rheological properties. Journal of Applied Polymer Science, 15(11), 2743.

    Article  Google Scholar 

  • Ellis, A. T., Ting, R. Y., & Nadolink, R. H. (1970). Some effects of storage and shear history on the friction reducing properties of dilute polymer solutions. AIAA Paper 70–532.

    Google Scholar 

  • Ellis, H. D. (1970). Effects of shear treatment of drag-reducing polymer solutions and fibre suspensions. Nature, 226(5243), 352–353.

    Article  Google Scholar 

  • El’perin, I. T., Smol’skii, B. M., & Leventhal, L. I. (1967). Decreasing the hydrodynamic resistance of pipelines. International Journal of Chemical Engineering, 7, 276–295.

    Google Scholar 

  • Emerson, A. (1965). Model experiments using dilute polymer solutions instead of water. Transactions North East Coast Institution of Engineers & Shipbuilders, 81, 201.

    Google Scholar 

  • Ernst, W. D. (1966). Investigation of turbulent shear flow of dilute aqueous CMC solutions. AICHE Journal, 12(3), 581–586.

    Article  Google Scholar 

  • Ernst, W. D. (1967). Turbulent flow of elasticoviscous non-newtonian fluid. AIAA Journal, 5(5), 906–909.

    Article  Google Scholar 

  • Evans, A. P. (1974). A new drag-reducing polymer with improved shear stability for nonaqueous systems. Journal of Applied Polymer Science, 18(7), 1919–1925.

    Article  Google Scholar 

  • Fabula, A. G. (1971). Fire-fighting benefits of polymeric friction reduction. Transactions ASME Journal of Basic Engineering, 93(3), 453–455.

    Article  Google Scholar 

  • Fabula, A. G., Hoyt, J. W., & Crawford, H. R. (1963). Turbulent flow characterisitcs of dilute aqueous solutions of high polymers. The Bulletin of the American Physical Society, 8, 15.

    Google Scholar 

  • Fajzullaev, D. P. (1974). Uvelicenije raschoda vody v trubo-provdach s pomose ju maloj dobavky preparata E-1, Doklady AV UzSSR, 7.

    Google Scholar 

  • Fisher, M. C., & Ash, R. L. (1974). A general review of the concepts for reducing skin friction, including recommendations for future studies. NASA TMX, 2894, L-9119.

    Google Scholar 

  • Fitzgerald, D. (1967). Brit. soc. of rheol. symp. on non-newtonian flow through pipes and passages. Shrivenham, UK.

    Google Scholar 

  • Forester, R. H., Larson, R. F., Hyden, J. W., & Wetzel, J. M. (1969). Effects of polymer addition on friction in a 10-inch diameter pipe. Journal of Hydronautics, 3, 59.

    Article  Google Scholar 

  • Forrest, F., & Grierson, G. A. (1931). Friction losses in cast iron pipe carrying papaer stock. Paper Trade Journal, 92, 39–41.

    Google Scholar 

  • Fortuin, J. M., & Klijn, P. J. (1982). Drag reduction and random surface renewal in turbulent pipe flow. Chemical Engineering Science, 37(4), 611–623.

    Article  Google Scholar 

  • Fortuna, G., & Hanratty, T. J. (1972). The influence of drag reducing polymers in turbulence in the viscous sublayer. Journal of Fluid Mechanics, 53(3), 575–586.

    Article  Google Scholar 

  • Fruman, D. H., Sundaram, T. R., & Daugard, S. J. (1974). Effect of drag-reducing polymer injection on the lift and drag of a two-dimensional hydrofoil. In Proc. intern. conf. on drag reduction. Cambridge, UK: Paper E2.

    Google Scholar 

  • Fruman, D., & Sulmont, P. (1969). Reduction de la resistance de prottement d’une plaque plane dans les solutions de polymeres. Comptes Rendus. Académie des Sciences, 268, 1493.

    Google Scholar 

  • Gadd, G. E. (1965). Turbulence damping and drag reduction produced by certain additives in water. Nature, 206(4983), 463–467.

    Article  Google Scholar 

  • Gadd, G. E. (1966a). Reduction of turbulent friction in liquids by dissolved additives. Nature, 212(5065), 874–877.

    Article  Google Scholar 

  • Gadd, G. E. (1966b). Differences in normal stress in aqueous solutions of turbulent drag reducing additives. Nature, 212(5069), 1348–1350.

    Article  Google Scholar 

  • Gadd, G. E. (1968). Effects of drag-reducing additives on vortex stretching. Nature, 217(5133), 1040–1042.

    Article  Google Scholar 

  • Gadd, G. E. (1971a). Friction reduction. In Encyclopedia of polymer science and technology (Vol. vol. 15). New York: Wiley.

    Google Scholar 

  • Gadd, G. E. (1971b). Reduction of turbulent drag in liquids. Nature, 230(10), 29–31.

    Google Scholar 

  • Giesekus, H., Bewersdorff, H. W., Dembek, G., Kwade, M., Martischius, F. D., & Scharf, R. (1981). Fortschritte der. Verfahrenstechnik, 19, 3.

    Google Scholar 

  • Giles, W. B. (1968). Similarity laws of friction-reduced flows. Journal of Hydronautics, 2(1), 34–40.

    Article  MathSciNet  Google Scholar 

  • Giles, W. B., & Pettit, W. T. (1967). Stability of dilute viscoelastic flow. Nature, 216(5114), 470–472.

    Article  Google Scholar 

  • Gold, P. T., Amar, P. K., & Swaidan, B. E. (1973). Friction reduction degradation in dilute poly(ethylene oxide) solutions. Journal of Applied Polymer Science, 17(2), 333–350.

    Article  Google Scholar 

  • Goldstein, S. (1965). On the resistance to the rotation of a disc immersed in a fluid. Proceedings of the Cambridge Philosophical Society, 31, 232.

    Article  MATH  Google Scholar 

  • Gollan, A., Tulin, M. P., & Rudy, S. L. (1970). Development and model tests of a surface ship additive system (Report 909-1). Hydronautics Inc. Tech.

    Google Scholar 

  • Gordon, R. J. (1970a). On the explanation and correlation of turbulent drag reduction in dilute macromolecular solutions. Journal of Applied Polymer Science, 14(8), 2097–2105.

    Article  Google Scholar 

  • Gordon, R. J. (1970b). Mechanism for turbulent drag reduction in dilute polymer solutions. Nature, 227(5258), 599–600.

    Article  Google Scholar 

  • Gordon, R. J., & Balakrishnan, C. (1972). Vortex inhibitions: A new viscoelastic effect with importance in drag reduction and polymer characterisation. Journal of Applied Polymer Science, 16(7), 1629–1639.

    Article  Google Scholar 

  • Goren, Y., & Norbury, J. F. (1967). Turbulent flow of dilute aqueous polymer solutions. Transactions ASME Journal of Basic Engineering, 89(4), 814–822.

    Article  Google Scholar 

  • Graham, M. D. (2004). Drag reduction in turbulent flow of polymer solutions. Rheology Reviews, 2, 143–170.

    Google Scholar 

  • Graham, M. D. (2014). Drag reduction and the dynamics of turbulence in simple and complex fluid. Physics of Fluids, 26, 101301.

    Article  Google Scholar 

  • Green, J. H. (1971). Effect of polymer additives on nozzle stream coherence: A preliminary study, Navel Undersea R and D Center TN 504.

    Google Scholar 

  • Greene, H. L. (1972). Proc. 25th ACEMB. Bal Harbour, FL.

    Google Scholar 

  • Greene, H. L., Nokes, R. F., & Thomas, L. C. (1970). Drag reduction in pulsed flow of blood. Research in Medical & Engineering, 9, 19.

    Google Scholar 

  • Greene, H. L., Nokes, R. F., & Thomas, L. C. (1971). Drag reduction phenomena in pulsed blood flow. In ASME symposium on flow. Pittsburgh, PA: Paper 4-4-64.

    Google Scholar 

  • Greene, H. L., Thomas, L. C., Mostordi, E. A., & Nokes, R. F. (1974). Potential biomedical applications of drag reducing agents. In Proc. intern. conf. on drag reduction. Cambridge, UK.

    Google Scholar 

  • Greskovich, E. J., & Shries, A. L. (1971). Drag reduction in two-phase flows. Industrial & Engineering Chemistry Fundamentals, 10(4), 646–648.

    Article  Google Scholar 

  • Gyr, A. (1968). Analogy between vortex stretching by drag-reducing additives and vortex stretching by fine suspensions. Nature, 219(5157), 928–929.

    Article  Google Scholar 

  • Gyr, A. (1974). ETH Zurich: Inst. fur hydromechanik und wasserwirtschaft (Report R7-74).

    Google Scholar 

  • Gyr, A., & Bewersdorff, H.-W. (1995). Drag reduction of turbulent flows by additives. Dordrecht, Netherlands: Kluwer Academic Publisher.

    Book  MATH  Google Scholar 

  • Halsey, G. D. (1953). On the structure of micelles. The Journal of Physical Chemistry, 57(1), 87–89.

    Article  Google Scholar 

  • Hampson, L. G., & Naylor, H. (1975). Friction reduction in journal bearings by high molecular weight polymers. In Proc. of the 2nd leads-lyon symposium on tribology (pp. 70–72). London: Mechanical Engineering Publications Ltd.

    Google Scholar 

  • Hand, J. H., & Williams, M. C. (1969). Effect of secondary polymer structure on the drag-reducing phenomenon. Journal of Applied Polymer Science, 13(11), 2499–2503.

    Article  Google Scholar 

  • Hand, J. H., & Williams, M. C. (1971). The role of polymer conformation in drag reduction. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 6.

    Google Scholar 

  • Hartley, G. S. (1949). Organised structure in soap solutions. Nature, 163(4150), 767–768.

    Article  Google Scholar 

  • Hershey, H. C., & Zakin, J. L. (1967). Existence of two types of drag reduction in pipe flow of dilute polymer solutions. Journal of Industrial and Engineering Chemistry, 6(3), 381–387.

    Google Scholar 

  • Hershey, H. C., Kuo, J. T., & McMillan, M. L. (1975). Drag reduction of straight and branched chain aluminum disoaps. Industrial and Engineering Chemistry Product Research and Development, 14(3), 192–199.

    Article  Google Scholar 

  • Holtmeyer, M. D., & Chatterji, J. (1980). Study of oil soluble polymers as drag reducers. Polymer Engineering & Science, 20(7), 473–477.

    Article  Google Scholar 

  • Hoyt, J. W. (1966a). The use of Porphyridium Aerugineum as a sealing aid in towing tanks. In Proc. 11th inter. towing tank conf. Tokyo.

    Google Scholar 

  • Hoyt, J. W. (1966b). Turbulent flow properties of deoxyribonucleic acid solutions. Nature, 211(5045), 170–171.

    Article  Google Scholar 

  • Hoyt, J. W. (1966c). Friction reduction as an estimator of molecular weight. Journal of Polymer Science Part B, 4(10), 713–716.

    Article  Google Scholar 

  • Hoyt, J. W. (1968). Turbulent flow properties of polysaccharide solutions. In Solution properties of natural polymers, 207, special publication N. 23. London: The Chemical Society.

    Google Scholar 

  • Hoyt, J. W. (1971). Blood transfusion fluids having reduced turbulent friction properties. US Patent No. 3,590,124.

    Google Scholar 

  • Hoyt, J. W. (1972a). The effect of additives on fluid friction. Transactions ASME Journal of Basic Engineering, 94(2), 258–285.

    Article  Google Scholar 

  • Hoyt, J. W. (1972b). Turbulent flow of drag-reducing suspensions (Report NUC TP 299). Naval Undersea Center.

    Google Scholar 

  • Hoyt, J. W. (1974). Hydrodynamic drag reduction due to fish slimes. In Symposium on swimming and flying in nature. California institute of technology. New York: Plenum Press.

    Google Scholar 

  • Hoyt, J. W. (1986). Drag reduction. In Encyclopedia of polymer science and engineering (Vol. vol. 5, p. 129). New York: Wiley.

    Google Scholar 

  • Hoyt, J. W., & Fabula, A. G. (1963). Frictional resistance in towing tanks. In Proc. 10th intern. towing tank conf. Teddington, UK.

    Google Scholar 

  • Hoyt, J. W., & Fabula, A. G. (1964). The effect of additives on fluid friction. In Proc. 5th symp. on naval hydrodynamics (Vol. 112, p. 947). Bergen, Norway: Office of Naval Research.

    Google Scholar 

  • Hoyt, J. W., & Soli, G. (1965). Algal cultures: Ability to reduce turbulent friction in flow. Science, 149(3691), 1509–1511.

    Article  Google Scholar 

  • Hoyt, J. W., & White, W. D. (1966). High polymer additive on turbulent flow of dextran, saline solution and plasma. In Proc. 19th annual conf. in engg. on medicine and biology (p. 49).

    Google Scholar 

  • Hunston, D. L., Griffith, J. R., & Little, R. C. (1973). Drag reducing properties of polyphosphates. Nature Physical Sciences, 245(148), 140–141.

    Article  Google Scholar 

  • Jackson, H. C., & Mayer, P. G. (1970). Georgia institute of technology: Unsteady flow of dilute aqueous polymer solutions in pipe networks – A method to improve water distribution. Water Resources Center Report WRC 0170.

    Google Scholar 

  • James, D. F., & Gupta, O. P. (1971). Drag on circular cylinders in dilute polymer solutions, AIChE. Chemical Engineering Progress Symposium Series No. 111, 67, 62.

    Google Scholar 

  • Johnson, B., & Barchi, R. H. (1968). Effect of drag-reducing additives on boundary layer turbulence. Journal of Hydronautics, 2(3), 168–175.

    Article  Google Scholar 

  • Jones, W. M., & Marshall, D. E. (1969). Relaxation effects in couette flow between rotating cylinders. Journal of Physics D, 2(6), 809–814.

    Article  Google Scholar 

  • Kale, D. D., & Metzner, A. B. (1974). Turbulent drag reduction in fiber-polymer systems: Specificity considerations. AICHE Journal, 20(6), 1218–1219.

    Article  Google Scholar 

  • Kale, D. D., & Metzner, A. B. (1976). Turbulent drag reduction in dilute fiber suspensions: Mechanistic consideration. AICHE Journal, 22(4), 669–674.

    Article  Google Scholar 

  • Kato, H., Watanabe, K., & Ueda, K. (1972). Frictional resistance of rotating disk in dilute polymer solutions: Part I. enclosed disk. Bulletin of the JSME, 15(88), 1185–1196.

    Article  Google Scholar 

  • Kawada, H., & Tagori, T. (1973). Proc. Ann. Meeting JSME.

    Google Scholar 

  • Kenis, P. R. (1968a). Drag reduction by bacterial metabolites. Nature, 217(5132), 940–942.

    Article  Google Scholar 

  • Kenis, P. R. (1968b). Effects of pH on the production of bacterial extracellular drag-reducing polymers. Journal of Applied Microbiology, 16(8), 1253–1254.

    Article  Google Scholar 

  • Kenis, P. R. (1969). Turbulent-flow drag reduction by polymers from marine and fresh water bacteria. International Shipbuilding Progress, 16(183), 342–348.

    Article  Google Scholar 

  • Kenis, P. R. (1971). Turbulent flow friction reduction effectiveness and hydrodynamic degradation of polysaccharides and synthetic polymers. Applied Polymer Science, 15, 607.

    Article  Google Scholar 

  • Kenis, P. R., & Hoyt, J. W. (1971). Friction reduction by Algal and bacterial polymers (Report No. NUC-TP-240). Naval Undersea Research & Development Center, San Diego.

    Google Scholar 

  • Kerekes, R. J., & Douglas, W. J. (1972). Viscosity properties of suspensions at the limiting conditions for turbulent drag reduction. The Canadian Journal of Chemical Engineering, 50(2), 228–231.

    Article  Google Scholar 

  • Killen, J. M. (1972). University of minnesota, St. Anthony Falls, hydraulic lab (Project Report No. 123).

    Google Scholar 

  • Killen, J. M., & Almo, J. (1969). An experimental study of the effects of dilute solutions of polymer additives on boundary layer characteristics. In C. S. Wells (Ed.), Viscous drag reduction (pp. 447–461). New York: Plenum Press.

    Chapter  Google Scholar 

  • Killian, F. P. (1970). Uber die verminderung des reibungswertes von grenzschichtstrosungen viscoelastischer flussigkeiten. In Mitteilungen der versuchanstalt fur wasserbau and schiffsbau (pp. Heft 51–Heft 52). Berlin, Germany.

    Google Scholar 

  • Kim, O. K., Little, R. C., & Ting, R. Y. (1973). Polymer structural effects in turbulent drag reduction. AICHE Chemical Engineering Progress Symposium Series No. 130, 69, 39.

    Google Scholar 

  • Kinnier, J. W. (1965). A correlation between friction reduction and molecular size for the flow of dilute aqueous polyethyleneoxide solutions in pipes (MS Thesis), US Naval Postgraduate School, Monterey.

    Google Scholar 

  • Kirdyashkin, A. G. (1977). Fluid mechanics. Soviet Research, 6, 79.

    Google Scholar 

  • Kobets, G. F. (1969). The mechanism of the influence of dissolved macromolecules (carboxymethylcellulose, polyvinyl alcohol, polysaccharides, slime of fish) on turbulent friction. Bionika, 3, 72.

    Google Scholar 

  • Kobets, G. F., Zar’yalova, V. S., & Komarova, M. L. (1969). The influence of the slime of fish on turbulent friction. Bionika, 3, 80.

    Google Scholar 

  • Kotenko, M., Oskarsson, H., Bojesen, C., & Nielsen, M. P. (2019). An experimental study of the drag reducing surfactant for district heating and cooling. Energy, 178, 72–78.

    Article  Google Scholar 

  • Kowalski, T. (1966). Reduction of frictional drag by non-newtonian additives. Naval Engineers Journal, 78(2), 293–297.

    Article  Google Scholar 

  • Kowalski, T. (1968a). Higher ships speeds due to injection of non-newtonian additives. Paper presented in Montreal on January 9th at the Eastern Canadian Section.

    Google Scholar 

  • Kowalski, T. (1968b). Turbulence suppression and viscous drag reduction by non-newtonian additives. Transactions RINA, 110, 207–219.

    Google Scholar 

  • Kruyt, H. R. (1949). In H. L. Booij. Association colloids, colloid science II, Elsevier Publishing Company, Amsterdam, p. 681.

    Google Scholar 

  • Kumar, S. M., & Sylvester, N. D. (1973). Effects of a drag-reducing polymer on the turbulent boundary layer. AICHE Chemical Engineering Progress Symposium Series No. 130, 69, 1.

    Google Scholar 

  • Kuo, Y., & Tanner, R. I. (1972). A burgers-type model of turbulent decay in non-newtonian fluid. Transactions ASME Journal of Applied Mechanics, 39(3), 661–666.

    Article  Google Scholar 

  • Kuriyama, K. (1962). Temperature dependence of micellar molecular weight of non-ionic surfactant in the presence of various additives. Kolloid-Z u. Z-Polymere, 180(1), 55–64.

    Article  Google Scholar 

  • Lacey, P. M. (1974). Drag reduction by long-chain polymers. Chemical Engineering Science, 29(6), 1495–1496.

    Article  Google Scholar 

  • Landahl, M. T. (1972). Drag reduction (and shear flow) by polymer addition (Report AFOSR-TR-73-1200). MIT Cambridge/MA, Dept. Aeronaut. Astronaut.

    Google Scholar 

  • Lang, T. G. (1969). The effect of drag reduction and other improvements on the design and performance of submerged vehicles. In C. S. Wells (Ed.), Viscous drag reduction (pp. 313–330). New York: Plenum Press.

    Chapter  Google Scholar 

  • Latto, B., & Czaban, J. (1974). On the performance of turbomachinery in the presence of aqueous polymer solutions. In Proc. intern. Conf. On drag reduction. Cambridge, UK.

    Google Scholar 

  • Latto, B., & Shen, C. H. (1970). Effect of dilute polymer injection on external boundary layer phenomena. The Canadian Journal of Chemical Engineering, 48(1), 34–38.

    Article  Google Scholar 

  • Lee, K. C., & Zakin, J. L. (1973). Drag reduction in hydrocarbon-aluminum soap polymer systems. AICHE Chemical Engineering Progress Symposium Series No. 130, 69, 45.

    Google Scholar 

  • Lee, W. K., Vaselaski, R. C., & Metzner, A. B. (1974). Turbulent drag reduction in polymer solutions containing suspended fibers. AICHE Journal, 20(1), 128–133.

    Article  Google Scholar 

  • Lehmann, A. F., & Suessmann, R. T. (1972). An experimental study of lift and drag of a hydrofoil with polymer ejection (Report No. 72-94). Oceanics Inc.

    Google Scholar 

  • Levy, J., & Davies, S. (1967). Drag measurements on a thin plate in dilute polymer solutions. International Shipbuilding Progress, 14(152), 166–175.

    Article  Google Scholar 

  • Liaw, G. C., Zakin, J. L., & Patterson, G. K. (1971). Effects of molecular characteristics of polymers on drag reduction. AICHE Journal, 17(2), 391–397.

    Article  Google Scholar 

  • Little, R. C. (1967). Drag reduction by dilute polymer solutions in turbulent flow (Report 6542). Naval Research Lab.

    Google Scholar 

  • Little, R. C. (1969). Displacement of aqueous drag-reducing polymer solutions. Industrial & Engineering Chemistry Fundamentals, 8(3), 520–521.

    Article  Google Scholar 

  • Little, R. C. (1971). The effect of added salt on the flow of highly dilute solutions of poly(ethylene oxide) polymers. Journal of Applied Polymer Science, 15(12), 3117–3125.

    Article  Google Scholar 

  • Little, R. C., & Patterson, R. L. (1974). Turbulent friction reduction by aqueous poly(ethylene oxide) polymer solutions as a function of salt concentration. Journal of Applied Polymer Science, 18(5), 1529–1539.

    Article  Google Scholar 

  • Little, R. C., & Wiegard, M. (1971). The flow of very dilute polyox solutions into a region of sudden capillary tube enlargement. Journal of Applied Polymer Science, 15, 1515.

    Article  Google Scholar 

  • Little, R. C., Hansen, R. J., Hunston, D. L., Kim, O. K., Patterson, R. L., & Ting, R. Y. (1975). The drag reduction phenomenon. Observed characteristics, improved agents and proposed mechanisms. Industrial & Engineering Chemistry Fundamentals, 14(4), 283–296.

    Article  Google Scholar 

  • Lockett, F. J. (1964). Fluid dynamics approach to the Toms effect. Nature, 222, 937–939.

    Article  Google Scholar 

  • Lumley, J. L. (1964). Turbulence in non-newtonian fluids. Physics of Fluids, 7(3), 335–337.

    Article  MathSciNet  MATH  Google Scholar 

  • Lumley, J. L. (1967). The Toms phenomenon: Anamolous effects in turbulent flows of dilute solutions of high molecular weight linear polymers. Applied Mechanics Reviews, 20(12), 1139–1149.

    Google Scholar 

  • Lumley, J. L. (1969). Drag reduction by additives. Annual Reviews of Fluid Mechanics, 1, 367–384.

    Article  Google Scholar 

  • Lumley, J. L. (1970). Concerning the behavior of dilute solutions of linear polymers. In Proc. drag reduction workshop. Boston, MA: ONR.

    Google Scholar 

  • Lumley, J. L. (1973). Drag reduction in turbulent flow by polymer additives. Journal of Polymer Science Macromolecular Reviews, 7(1), 263–290.

    Article  Google Scholar 

  • Lummus, J. L., & Randall, B. V. (1964). Development of drilling fluid friction additives for project MOHOLE (Report F64-P-54). Pan American Petroleum Corp. Research Dept. Job No. 3918.

    Google Scholar 

  • Marris, A. W., & Wang, J. T.-S. (1965). In J. W. Hoyt (Ed.), Symposium on rheology. New York: ASME.

    MATH  Google Scholar 

  • Maude, A. D., & Whitmore, R. L. (1958). The turbulent flow of suspensions in tubes. Chemical Engineering Research and Design, 36a, 297–305.

    Google Scholar 

  • Maxson, A., Watson, L., Karandikar, P., & Zakin, J. (2017). Heat transfer enhancement in turbulent drag reducing surfactant solutions by agitated heat exchangers. International Journal of Heat and Mass Transfer, 109, 1044–1051.

    Article  Google Scholar 

  • McMillan, M. L. (1970). Drag reduction and light scattering studies of aluminum disoaps in toulene (PhD Thesis). Ohio State University, Columbus, OH.

    Google Scholar 

  • McMillan, M. L., Hershey, H. C., & Baxter, R. (1971). Effects of aging, concentration, temperature, method of preparation, and other variables on the drag reduction of aluminum disoaps in toulene. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 27.

    Google Scholar 

  • Mejean, L., & Boulos, M. I. (1976). Caracteristiques rheologiques des suspensions de tourbe. The Canadian Journal of Chemical Engineering, 54(5), 382–391.

    Article  Google Scholar 

  • Melton, L. L., & Malone, W. T. (1974). Fluid mechanics research and engineering applications in non-newtonian fluid systems. SPE Journal, 4(1), 56–66.

    Google Scholar 

  • Mel’tser, L. Z., El’perin, I. T., Leventhal, L. I., & Kovalenko, V. S. (1972). Effect of polyacrylamide additive on hydraulic resistances of brine systems. Kholod Tekh Tekhnol, 15, 36.

    Google Scholar 

  • Merkulov, V. I., & Khotinskaya, V. D. (1969). The mechanism of drag reduction in different types of fish (negative viscosity of dilute solutions of slime measured by the Oswald viscometer). Bionika, 3, 96.

    Google Scholar 

  • Merrill, E. W., Mickley, H. S., & Ram, A. (1962). Instability in couette flow of solutions of macromolecules. Journal of Fluid Mechanics, 13, 86–90.

    Article  MATH  Google Scholar 

  • Meter, D. M. (1964). Tube flow of non-newtonian polymer solutions: Part II – turbulent flow. AICHE Journal, 10(6), 881–884.

    Article  Google Scholar 

  • Metzner, A. B., & Metzner, A. P. (1970). Stress levels in rapid extensional flows of polymeric fluids. Rheologica Acta, 9(2), 174–181.

    Article  Google Scholar 

  • Metzner, A. B., & Park, M. G. (1964). Turbulent flow characteristics of viscoelastic fluids. Journal of Fluid Mechanics, 20(2), 291–303.

    Article  Google Scholar 

  • Mih, W., & Parker, J. (1967). Velocity profile measurements and a phenomenological description of turbulent fiber suspension pipe flow. TAPPI, 50(5), 237–246.

    Google Scholar 

  • Mueller, H. G., & Klein, J. (1980). Mechanical shear degradation of a polymer solution by capillary flow. Makromolecular Rapid Communication, 1(1), 27–29.

    Article  Google Scholar 

  • Mysels, K. J. (1949). Flow of thickened fluids. US Patent No. 2,492,173 (Dec 27).

    Google Scholar 

  • Mysels, K. J. (1971). Early experiments with viscous drag reduction. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 1017.

    Google Scholar 

  • Myska, J., & Simeckova, M. (1983). The shape of micelles of a complex soap causing the Toms effect. Colloid & Polymer Science, 261(2), 171–175.

    Article  Google Scholar 

  • Nadolink, R. H. (1973). Friction reduction in dilute solutions of polystyrene (Technical Report 4422). Naval Universea Systems Center.

    Google Scholar 

  • Nadolink, R. H., & Haigh, W. W. (1995). Bibliography on skin friction reduction with polymers and other boundary-layer additives. Applied Mechanics Reviews, 48(7), 351–460.

    Article  Google Scholar 

  • Nagarajan, R., Davies, G. S., & Venkateswarlu, D. (1974). Drag reduction characteristics of polyacrylamide additives. The Chemical Engineering Journal, 7(3), 249–252.

    Article  Google Scholar 

  • Nash, T. (1956a). Modification of the bulk mechanical properties of water by complex formation in dilute solution. Nature, 177(4516), 948.

    Article  Google Scholar 

  • Nash, T. (1956b). Conjugation with lone-pair electrons. II the adsorption of napthols by cationic micelles in dilute aqueous solution. Journal of Applied Chemistry, 6(12), 539–546.

    Article  Google Scholar 

  • Nash, T. (1958). The interaction of some naphalene derivatives with a cationic soap below the critical micelle concentration. Journal of Colloid Science, 13(2), 134–139.

    Article  Google Scholar 

  • Nokes, R. F., Greene, H. L., & Thomas, L. C. (1971). Ventricular myograph tracing during polyacrylamide perfusion. In Proc. 24th annual conf. on engg. in medicine and biology. Las Vegas.

    Google Scholar 

  • Oldroyd, J. G. (1948). A suggested method of detecting wall effects on turbulent flow through tubes. In Proc. 1st intern. congr. on rheology, II (p. 130). North Holland, Amsterdam.

    Google Scholar 

  • Oltmann, P. (1969). Verusche zur verminderung des reibungwiderstandes von schiffsmodelen. Schiff und Hafen, 21, 3.

    Google Scholar 

  • Ousterhout, R. S., & Hall, C. D. (1961). Reduction of friction loss in fracturing operations. The Journal of Petroleum Technology, 13(3), 217–222.

    Article  Google Scholar 

  • Palyvos, J. A. (1974). Drag reduction and associated phenomena in internal and external liquid flows (Report No. 741). Thermodynamics and Transport Phenomena Lab, National Techn Univ., Athens 147, Greece.

    Google Scholar 

  • Parker, C. A., & Joyce, T. A. (1974). Drag reduction and molecular structure. The interaction of polyethylene amine with some linear high polymers. Journal of Applied Polymer Science, 18(1), 155–165.

    Article  Google Scholar 

  • Paterson, R. W., & Abernathy, F. H. (1970). Turbulent flow drag reduction and degradation with dilute polymer solutions. Journal of Fluid Mechanics, 43(4), 689–710.

    Article  Google Scholar 

  • Patterson, G. K., & Zakin, J. L. (1968). Prediction of drag reduction with a viscoelastic model. AICHE Journal, 14(3), 434–439.

    Article  Google Scholar 

  • Patterson, G. K., Zakin, J. L., & Rodriguez, J. M. (1969). Drag reduction – polymer solutions, soap solutions and solid particle suspensions in pipe flow. Industrial and Engineering Chemistry, 61(1), 22–30.

    Article  Google Scholar 

  • Pereira, A. S., Mompean, G., Thais, L., & Soares, E. J. (2017). Transient aspects of drag reducing plane couette flows. Journal of Non-Newtonian Fluid Mechanics, 241, 60–69.

    Article  MathSciNet  Google Scholar 

  • Peterlin, A. (1970). Molecular model of drag reduction by polymer solutes. Nature, 227(5258), 598–599.

    Article  Google Scholar 

  • Peyser, P. (1973). The drag reduction of chrysotile asbestos dispersions. Journal of Applied Polymer Science, 17(2), 421–431.

    Article  Google Scholar 

  • Peyser, P., & Little, R. C. (1971). The drag reduction of dilute polymer solutions as a function of solvent power, viscosity and temperature. Journal of Applied Polymer Science, 15(11), 2623–2637.

    Article  Google Scholar 

  • Pfenninger, W. (1967). A hypothesis of the reduction of turbulent friction drag in fluid flows by means of additives. Northrop Corp. Norair Division Report BLC-179.

    Google Scholar 

  • Pilpel, N. (1954). On gel formation in soaps. Journal of Colloid Science, 9(4), 285–299.

    Article  Google Scholar 

  • Pilpel, N. (1966a). Viscoelasticity of aqueous soap solutions. Part 3. Transactions of the Faraday Society, 62, 1015–1022.

    Article  Google Scholar 

  • Pilpel, N. (1966b). Viscoelasticity of aqueous soap solutions. Part 4. – effect of alcohols. Transactions of the Faraday Society, 62, 2941–2952.

    Article  Google Scholar 

  • Pirih, R. J., & Swanson, W. M. (1972). Drag reduction and turbulence modification in rigid particle suspensions. The Canadian Journal of Chemical Engineering, 50(2), 221–227.

    Article  Google Scholar 

  • Polishchunk, A. M., Raiskii, Y. D., & Temchin, A. Z. (1972). Effect of small addition of polyisobutylene on the turbulent flow of kerosene in a pipe. Neftyanoe Khozyaistvo (Petroleum Industry), 50, 60.

    Google Scholar 

  • Pollert, J. (1977). Proc. second intern. conf. on drag reduction (pp. B3–B37). Cambridge, UK: BHRA Fluid Engg.

    Google Scholar 

  • Poreh, M., Zakin, J. L., Brosh, A., & Warsharsky, M. (1970). Drag reduction in hydraulic transport of solids. Proceedings of the ASCE Hydraulics Division, 4, 903–909.

    Google Scholar 

  • Prather, R. J. (1966). Investigations of the ultrasonic dynamic viscoelastic properties of aqueous poly(ethylene oxide) solutions (MS Thesis). US Naval Postgraduate School, Monterey.

    Google Scholar 

  • Procaccia, I., L’vov, V. S., & Benzi, R. (2008). Theory of drag reduction by polymers in wall-bounded turbulence. Reviews of Modern Physics, 80(1), 225–247.

    Article  Google Scholar 

  • Pruitt, G. T., & Crawford, H. R. (1963). Drag reduction, rheology, and capillary end effects of some dilute polymer solutions. Final Report, Westco Research on Contract 60530-8250 to Naval Ordinance Test Section.

    Google Scholar 

  • Pruitt, G. T., & Crawford, H. R. (1965). Effect of molecular weight and segmental constitution on the drag reduction of water soluble polymers (Report No. DTMB-1).Western Co. under Contract No. Nonr 4306 (00).

    Google Scholar 

  • Pruitt, G. T., Rosen, B., & Crawford, H. R. (1966). Effect of polymer coiling on drag reduction. Western Co. Report DTMB-2 Nonr 4306 (00).

    Google Scholar 

  • Pruitt, G. T., Simmons, C. M., Neill, G. H., & Crawford, H. R. (1964). A method to minimise costs of pumping fluids containing friction reducing additives. SPE paper No 997.

    Google Scholar 

  • Pyatetskii, V. E., & Savshenko, Y. N. (1969). The influence of slime on the flow resistance of fish. Bionika, 3, 90.

    Google Scholar 

  • Radin, I., Zakin, J. L., & Patterson, G. K. (1969). Exploratory drag reduction studies in non-polar soap systems. In C. S. Wells (Ed.), Viscous drag reduction (pp. 213–231). New York: Plenum Press.

    Chapter  Google Scholar 

  • Radin, I., Zakin, J. L., & Patterson, G. K. (1973). Drag reduction of solid-liquid suspensions in pipe flow. Nature Physical Sciences, 246(149), 11–12.

    Article  Google Scholar 

  • Ram, A., & Kadim, A. (1970). Shear degradation of polymer solutions. Journal of Applied Polymer Science, 14(8), 2145–2156.

    Article  Google Scholar 

  • Ram, A., Finkelstein, F., & Elata, C. (1967). Reduction of friction in oil pipelines by polymer additives. Industrial & Engineering Chemistry Process Design and Development, 6(3), 309–313.

    Article  Google Scholar 

  • Ramakrishnan, C., & Rodriguez, F. (1973). Drag reduction in nonaqueous liquids. AICHE, Chemical Engineering Progress Symposium Series No. 130, 69, 52.

    Google Scholar 

  • Ripkin, J. F., & Pilch, M. (1963). Studies of the reduction of pipe friction with the non-newtonian additive CMC, St. Anthony Falls hydraulic lab. Technical Paper No. 42, Series B.

    Google Scholar 

  • Robertson, A. A., & Chang, M. V. (1967). Flocculation studies of fiber suspensions: Influence of zeta potential. Pulp and Paper Magazine of Canada, 68, T438.

    Google Scholar 

  • Robertson, A. A., & Mason, S. G. (1957). The flow characteristics of dilute fiber suspensions. TAPPI, 40(5), 326–344.

    Google Scholar 

  • Rodriguez, F. (1971). Drag reduction by a polymeric aluminum soap. Nature Physical Sciences, 230(15), 152–153.

    Article  Google Scholar 

  • Rodriguez, J. M., Zakin, J. L., & Patterson, G. K. (1967). Correlation of drag reduction with modified deborah number for dilute polymer solutions. SPE Journal, 7, 325–332.

    Google Scholar 

  • Rosen, M. W., & Cornford, N. E. (1971). Fluid friction of fish slimes. Nature, 234(5323), 49–51.

    Article  Google Scholar 

  • Rubin, H. (1972). Drag reduction application in fire-fighting systems. Proceedings of ASCE Journal Sanitary Engineering, 98, 1.

    Google Scholar 

  • Rubin, H., & Elata, C. (1966). Stability of couette flow of dilute polymer solutions. Physics of Fluids, 9(10), 1929–1933.

    Article  Google Scholar 

  • Rubin, H., & Elata, C. (1971). Turbulent flow of dilute polymer solutions through an annulus. AICHE Journal, 17(4), 990–996.

    Article  Google Scholar 

  • Ruckenstein, E. (1973). A note on the mechanism of drag reduction. Journal of Applied Polymer Science, 17(10), 3239–3240.

    Article  Google Scholar 

  • Rudd, M. J. (1971). Laser dopplermeter and polymer drag reduction. AICHE Chemical Engineering Progress Symposium Series, 111(67), 21.

    Google Scholar 

  • Rudd, M. J. (1972). Velocity measurements made with a laser dopplermeter on the turbulent pipe flow of a dilute polymer solution. Journal of Fluid Mechanics, 51(4), 673–685.

    Article  Google Scholar 

  • Ruszczycky, M. A. (1965). Sphere drop tests in high polymer solutions. Nature, 206, 614–615.

    Article  Google Scholar 

  • Sanders, J. V., Henderson, B. H., & White, R. (1973). Effects of polyethylene oxide solutions on the performance of a small propeller. Journal of Hydronautics, 7(3), 124–128.

    Article  Google Scholar 

  • Sarpkaya, T. (1973). Lift and drag measurements on a hydrofoil in dilute polyox solutions. Nature, 241(5385), 114–115.

    Article  Google Scholar 

  • Savins, J. G. (1961). Some comments on pumping requirements for non-newtonian fluids. Journal Institute of Petroleum, 47, 329.

    Google Scholar 

  • Savins, J. G. (1964). Drag reduction characteristics of solution of macromolecules in turbulent pipe flow. SPE Journal, 4(3), 203–214.

    Google Scholar 

  • Savins, J. G. (1967). A stress controlled drag reduction phenomenon. Rheologica Acta, 6(4), 323–330.

    Article  Google Scholar 

  • Savins, J. G. (1968). Method of decreasing friction loss in turbulent liquids. US Patent No. 3,361,213.

    Google Scholar 

  • Savins, J. G. (1969). Contrasts in the solution drag reduction characteristics of polymer solutions and micellar systems. In C. S. Wells (Ed.), Viscous drag reduction (pp. 183–212). New York: Plenum Press.

    Chapter  Google Scholar 

  • Scott, D. (1969). Slippery water in fire hoses. Science, 164(3887), 1466.

    Article  Google Scholar 

  • Sellin, R. H. (1978). Drag reduction in sewers: First results from a permanent installation. Journal of Hydraulic Research, 16(4), 357–371.

    Article  Google Scholar 

  • Sellin, R. H., & Barnard, B. J. (1970). Open channel applications for dilute polymer solutions. Journal of Hydraulic Research, 8(2), 219–228.

    Article  Google Scholar 

  • Sellin, R. H., & Barnard, B. J. (1971). The use of friction reducing additives to increase the capacity of storm water sewers. Journal of the Institution of Municipal Engineers, 98, 207.

    Google Scholar 

  • Sellin, R. H., & Ollis, M. J. (1980). Polymer drag reduction in large pipes and sewers: Results of recent field trials. Journal of Rheology, 24(5), 667–684.

    Article  Google Scholar 

  • Sellin, R. H., Hoyt, J. W., & Scrivener, O. (1982). The effect of drag reducing additives on fluid flows and their industrial applications. Part 1: Basic aspects. Journal of Hydraulic Research, 20(1), 29–68.

    Article  Google Scholar 

  • Sellin, R. H., Hoyt, J. W., Pollert, J., & Scrivener, O. (1982). The effect of drag reducing additives on fluid flows and their industrial applications. Part 2: Present applications and future proposals. Journal of Hydraulic Research, 20, 235–292.

    Article  Google Scholar 

  • Seyer, F. A., & Metzner, A. B. (1967a). Turbulent flow properties of viscoelastic fluids. The Canadian Journal of Chemical Engineering, 45(3), 121–126.

    Article  Google Scholar 

  • Seyer, F. A., & Metzner, A. B. (1967b). Turbulence phenomena in drag reducing systems, 60th annual AICHE meeting, New York.

    Google Scholar 

  • Shaver, R. G., & Merrill, E. W. (1959). Turbulent flow of pseudoplastic polymer solutions in straight cylindrical tubes. AICHE Journal, 5(2), 181–188.

    Article  Google Scholar 

  • Sheffer, H. (1948). Aluminum soaps as high polymers. Canadian Journal of Research, 26b(6), 481–498.

    Article  Google Scholar 

  • Shenoy, A. V. (1976). Drag reduction with surfactants at elevated temperatures. Rheologica Acta, 15(11–12), 658–664.

    Article  Google Scholar 

  • Shenoy, A. V. (1984). A review on drag reduction with special reference to micellar systems. Colloid & Polymer Science, 262(4), 319–337.

    Article  Google Scholar 

  • Shi, H., Wang, Y., Fang, B., Talmon, Y., Ge, W., Raghavan, S. R., et al. (2011). Light-responsive threadlike micelles as drag reducing fluids with enhanced heat-transfer capabilities. Langmuir, 27(10), 5806–5813.

    Article  Google Scholar 

  • Shin, H. (1965). Reduction of drag in turbulence by dilute polymer solutions (ScD Thesis). MIT, Cambridge, MA.

    Google Scholar 

  • Song, C. S., & Tsai, F. Y. (1966). Experimental investigation of taylor instability using non-newtonian fluids. Project Report Mp-84, St., Anthony Falls Hydraulic Lab.

    Google Scholar 

  • Sylvester, N. D., & Smith, P. S. (1979). The concentration and friction velocity effects on drag reduction by Dowell-APE in kerosene. Industrial & Engineering Chemistry Product Research and Development, 18(1), 47–49.

    Article  Google Scholar 

  • Thomas, D. G. (1962). Transport characteristics of suspensions: Part IV. Friction loss of concentrated – flocculated suspensions in turbulent flow. AICHE Journal, 8(2), 266–271.

    Article  Google Scholar 

  • Thorne, P. F. (1974). Drag reduction in fire fighting. In Proc. intern. conf. on drag reduction. Cambridge, UK.

    Google Scholar 

  • Thorne, P. F., Theobald, C. R., & Mahendran, P. (1975). Drag reduction in fire hose trials at fire service technical college, Part 1. Experiments and Results, Research Note 1033, Part 2: Analysis and Application of results, Research Note 1043.

    Google Scholar 

  • Ting, R. Y. (1982). Some molecular effects in drag reduction: A summary. Chemical Engineering Communications, 15(5–6), 331–342.

    Article  Google Scholar 

  • Ting, R. Y., & Kim, O. K. (1973). Water-soluble polymers. In N. M. Bikales (Ed.), Drag reduction properties of high molecular weight polyacrylamide and related polymers. New York: Plenum Press.

    Chapter  Google Scholar 

  • Tomita, Y. (1970). Pipe flows of dilute aqueous polymer solution: Part 1, experimental study of pipe friction coefficient. Bulletin of JSME, 13(61), 926–934.

    Article  Google Scholar 

  • Toms, B. A. (1948). Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proc. 1st intern. congr. on rheology, II (pp. 135–141). Scheveningen, North Holland, Amsterdam.

    Google Scholar 

  • Tothill, J. T. (1967). Ships in restricted channels – a correlation of model tests, field measurements, and theory. Marine Technologies, 4, 111.

    Google Scholar 

  • Treiber, K. L., & Sieracki, L. M. (1970). The effect of non-newtonian friction reducing additives in a diesel fuel pipeline (Report No. 101-Z). Columbia Res. Corp.

    Google Scholar 

  • Tulin, M. P. (1966). Hydrodynamic aspects of macromolecular solutions. In Proc. 6th symp. on naval hydrodynamics ACR-136 (p. 3). ONR: Washington, DC.

    Google Scholar 

  • Van Driest, E. R. (1970). Turbulent drag reduction of polymeric solutions (long chain molecule additive effect on drag reduction in turbulent flow of aqueous polymeric solutions). Journal of Hydronautics, 4(3), 120–126.

    Article  Google Scholar 

  • Van Driest, E. R. (1971). Turbulent flow of non-Newtonian fluids. In Proc. 9th intern. symp. on space tech. and science. Tokyo.

    Google Scholar 

  • Vanasse, R., Coupal, B., & Boulos, M. I. (1979). Hydraulic transport of peat moss suspensions. The Canadian Journal of Chemical Engineering, 57(2), 238–241.

    Article  Google Scholar 

  • Vanoni, V. A. (1946). Transportation of suspended sediment by water. Transactions ASCE, 111, 67–133.

    Google Scholar 

  • Vanoni, V. A., & Nomicos, G. N. (1960). Resistance properties of sediment laden streams. Transactions ASCE, 125(1), 1140–1167.

    Google Scholar 

  • Varshney, A., & Steinberg, V. (2018). Drag enhancement and drag reduction in viscoelastic flow. Physics Review Fluids, 3, 103302.

    Article  Google Scholar 

  • Vaselaski, R. C., & Metzner, A. B. (1974). Drag reduction in the turbulent flow of fiber suspensions. AICHE Journal, 20(2), 301–306.

    Article  Google Scholar 

  • Virk, P. S. (1966). The toms phenomenon – Turbulent pipe flow of dilute polymer solutions, Mass. Inst. of Tech., (ScD Thesis).

    Google Scholar 

  • Virk, P. S. (1971a). Drag reduction in rough pipes. Journal of Fluid Mechanics, 45(2), 225–246.

    Article  Google Scholar 

  • Virk, P. S. (1971b). An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules. Journal of Fluid Mechanics, 45(3), 417–440.

    Article  Google Scholar 

  • Virk, P. S. (1975). Drag reduction fundamentals. AICHE Journal, 21(4), 625–656.

    Article  Google Scholar 

  • Virk, P. S., Mickley, H. S., & Smith, K. A. (1970). The ultimate asymptote and mean flow structure in Toms’ phenomenon. Transactions ASME Journal of Applied Mechanics, 37(2), 488–493.

    Article  Google Scholar 

  • Vogel, V. M., & Patterson, A. M. (1964). An experimental investigation of the effects of additives injected into the boundary layer of an underwater body. In Proc. 5th symp. on naval hydrodynamics ONR-ACR-112 (p. 975). Berge.

    Google Scholar 

  • Walsh, M. (1967a). On the turbulent flow of dilute polymer solutions (PhD Thesis). California Institute of Technology.

    Google Scholar 

  • Walsh, M. (1967b). Theory of drag reduction in dilute high-polymer flows. International Shipbuilding Progress, 14(152), 134–139.

    Article  Google Scholar 

  • Walters, K., Barnes, H. A., & Dodson, A. C. (1971). Drag reduction in unconventional flow situations. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 1.

    Google Scholar 

  • Walters, R. R., & Wells, C. S. (1971). An experimental study of turbulent diffusion of drag-reducing polymer additives. Journal of Hydronautics, 5(2), 65–72.

    Article  Google Scholar 

  • Wang, Y., Yu, B., Zakin, J. L., & Shi, H. (2011). Review on drag reduction and its heat transfer by additives. Advances in Mechanical Engineering, 17. https://doi.org/10.1155/2011/478749

  • Warholic, M. D., Massah, H., & Hanratty, T. J. (1999). Influence of drag-reducing polymers on turbulence: Effects of Reynolds number, concentration and mixing. Experiments in Fluids, 27(5), 461–472.

    Article  Google Scholar 

  • Wei, T., & Willmarth, W. W. (1992). Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows. Journal of Fluid Mechanics, 245, 619–641.

    Article  Google Scholar 

  • Wells, C. S. (1969). An analysis of uniform injection of a drag reducing fluid into a turbulent boundary layer. In C. S. Wells (Ed.), Viscous drag reduction (pp. 361–382). New York: Plenum Press.

    Chapter  Google Scholar 

  • White, A. (1966a). Effect of polymer additives on boundary layer separation and drag of submerged bodies. Nature, 211(5056), 1390.

    Article  Google Scholar 

  • White, A. (1966b). Turbulent drag reduction with polymer additives. Journal of Mechanical Engineering Science, 8(4), 452–455.

    Article  Google Scholar 

  • White, A. (1967a). Flow characteristics of complex soap systems. Nature, 214(5088), 585–586.

    Article  Google Scholar 

  • White, A. (1967b). Drag of spheres in dilute high polymer solutions. Nature, 216(5119), 994–995.

    Article  Google Scholar 

  • White, A. (1968). Studies of flow characteristics of dilute high polymer solutions. Henderson College of Technology Research Bulletin, (5), 113.

    Google Scholar 

  • White, A., & Hemmings, J. A. (1976). Drag reduction bt additives: Review and bibliography. Cranfield, UK: BHRA Fluid Engg.

    Google Scholar 

  • White, C. M., & Mungal, M. G. (2008). Mechanics and prediction of turbulent drag reducation with polymer additives. Annual Review of Fluid Mechanics, 40, 235–256.

    Article  MATH  Google Scholar 

  • Whitsitt, N. F., Harrington, J. J., & Crawford, H. R. (1968). Effect of wall shear stress on drag reduction of viscoelastic fluids. Western Co. Report No. DTMB-3, Contract No. Nonr-4306(00).

    Google Scholar 

  • Williams, M. C. (1965). Normal stress and viscosity measurements for polymer solutions in steady cone-and-plate shear. AICHE Journal, 11(3), 467–473.

    Article  Google Scholar 

  • Wolff, J. H., & Cahn, R. D. (1971). Lifting surfaces in polymer solutions (p. 3653). Bethesda, MD: Naval Ship Research Development Center Report.

    Google Scholar 

  • Wu, J. (1969). Drag reduction in external flows of additive solutions. In C. S. Wells (Ed.), Viscous drag reduction (pp. 331–350). New York: Plenum Press.

    Chapter  Google Scholar 

  • Wu, J. (1971). Surface containing of polymer solution and pulsative ejection. Nature Physical Sciences, 231(24), 150.

    Article  Google Scholar 

  • Wu, J. (1973). Injection of drag-reducing polymers into a turbulent boundary layer. Journal of Hydronautics, 7(3), 129–132.

    Article  Google Scholar 

  • Zakin, J. L. (1972). Effects of age and water content on drag reduction in aluminum disoap-hydrocarbon solutions. Nature Physical Sciences, 235(57), 97–98.

    Article  Google Scholar 

  • Zakin, J. L., & Chang, J. L. (1972). Nonionic surfactants as drag reducing additives. Nature Physical Sciences, 239(89), 26–29.

    Article  Google Scholar 

  • Zakin, J. L., & Chang, J. L. (1974). Polyoxyethylene alcohol non-ionic surfactants as drag reducing additives. In Proc. intern. conf. on drag reduction. Cambridge, UK.

    Google Scholar 

  • Zakin, J. L., & Hunston, D. L. (1980). Effect of polymer molecular variables on drag reduction. Journal of Macromolecular Science Physics, B18(4), 795–815.

    Article  Google Scholar 

  • Zakin, J. L., Lu, B., & Bewersdorff, H. W. (1998). Surfactant drag reduction. Reviews in Chemical Engineering, 14(4–5), 255–320.

    Google Scholar 

  • Zakin, J. L., Poreh, M., Brosh, A., & Warsharsky, M. (1971). Exploratory study of friction reduction in slurry flows. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 85–89.

    Google Scholar 

  • Zandi, I. (1967). Decreased head losses in raw water conduits. Journal of American Water Works Association, 59(2), 213–226.

    Article  Google Scholar 

  • Zhu, L., Bai, X., Krushelnycky, E., & Xi, L. (2019). Transient dynamics of turbulence growth and bursting: Effects of drag-reducing polymers. Journal of Non-Newtonian Fluid Mechanics, 266, 127–142.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shenoy, A. (2020). Drag Reducing Agents: A Historical Perspective. In: Rheology of Drag Reducing Fluids. Springer, Cham. https://doi.org/10.1007/978-3-030-40045-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40045-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40044-6

  • Online ISBN: 978-3-030-40045-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics