Skip to main content

Immune System and Macrophage Activation in the Cochlea: Implication for Therapeutic Intervention

  • Chapter
  • First Online:
New Therapies to Prevent or Cure Auditory Disorders
  • 479 Accesses

Abstract

Cochlear inflammation occurs in almost all forms of cochlear disease conditions. This immune activation is mediated by both cellular and molecular components of the cochlear immune system. In the event of inflammatory activation, resident and infiltrating macrophages interact to unleash a cascade of inflammatory mediators. While the precise roles of immune responses in cochlear homeostasis and pathogenesis are not fully understood, anti-inflammatory therapeutics have shown to be beneficial in certain cochlear stress conditions. Recent studies are beginning to reveal the cellular and molecular mechanisms governing inflammatory activities, which in turn offer potential targets for intervention. In this review, we provide an updated overview of the immune anatomy of the cochlea with a focus on the cellular components of the cochlear immune system and macrophage diversity. We describe cochlear inflammatory activities in acute and chronic stress conditions and suggest that controlling the cochlear immune state could offer protection against not only ongoing pathogenesis but also future vulnerability in the event of additional stress. We highlight the potential functional roles of the immune system in cochlear homeostasis and disease, as well as the link between clinical symptoms and cochlear inflammation. Finally, we discuss immune modulations for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verschuur C, Causon A, Green K, Bruce I, Agyemang-Prempeh A, Newman T (2015) The role of the immune system in hearing preservation after cochlear implantation. Cochlear Implants Int 16(Suppl 1):S40–SS2

    Article  PubMed  Google Scholar 

  2. Hirose K, Li SZ, Ohlemiller KK, Ransohoff RM (2014) Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide. J Assoc Res Otolaryngol 15(4):555–570

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goodall AF, Siddiq MA (2015) Current understanding of the pathogenesis of autoimmune inner ear disease: a review. Clin Otolaryngol 40(5):412–419

    Article  CAS  PubMed  Google Scholar 

  4. Iwai H, Lee S, Inaba M, Sugiura K, Baba S, Tomoda K et al (2003) Correlation between accelerated presbycusis and decreased immune functions. Exp Gerontol 38(3):319–325

    Article  PubMed  Google Scholar 

  5. Toubi E, Ben-David J, Kessel A, Halas K, Sabo E, Luntz M (2004) Immune-mediated disorders associated with idiopathic sudden sensorineural hearing loss. Ann Otol Rhinol Laryngol 113(6):445–449

    Article  PubMed  Google Scholar 

  6. Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489(2):180–194

    Article  PubMed  Google Scholar 

  7. Gazquez I, Soto-Varela A, Aran I, Santos S, Batuecas A, Trinidad G et al (2011) High prevalence of systemic autoimmune diseases in patients with Meniere’s disease. PLoS One 6(10):e26759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Warchol ME, Schwendener RA, Hirose K (2012) Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea. PLoS One 7(12):e51574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang C, Sun W, Li J, Xiong B, Frye MD, Ding D et al (2017) Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. Neuroscience 361:179–191

    Article  CAS  PubMed  Google Scholar 

  10. Psillas G, Pavlidis P, Karvelis I, Kekes G, Vital V, Constantinidis J (2008) Potential efficacy of early treatment of acute acoustic trauma with steroids and piracetam after gunshot noise. Eur Arch Otorhinolaryngol 265(12):1465–1469

    Article  PubMed  Google Scholar 

  11. Zhou Y, Zheng G, Zheng H, Zhou R, Zhu X, Zhang Q (2013) Primary observation of early transtympanic steroid injection in patients with delayed treatment of noise-induced hearing loss. Audiol Neurootol 18(2):89–94

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi K, Kusakari J, Kimura S, Wada T, Hara A (1996) The effect of methylprednisolone on acoustic trauma. Acta Otolaryngol 116(2):209–212

    Article  CAS  PubMed  Google Scholar 

  13. Sautter NB, Shick EH, Ransohoff RM, Charo IF, Hirose K (2006) CC chemokine receptor 2 is protective against noise-induced hair cell death: studies in CX3CR1(+/GFP) mice. J Assoc Res Otolaryngol 7(4):361–372

    Article  PubMed  PubMed Central  Google Scholar 

  14. Canlon B, Meltser I, Johansson P, Tahera Y (2007) Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear Res 226(1–2):61–69

    Article  CAS  PubMed  Google Scholar 

  15. Fakhry N, Rostain JC, Cazals Y (2007) Hyperbaric oxygenation with corticoid in experimental acoustic trauma. Hear Res 230(1–2):88–92

    Article  CAS  PubMed  Google Scholar 

  16. Hoshino T, Tabuchi K, Hirose Y, Uemaetomari I, Murashita H, Tobita T et al (2008) The non-steroidal anti-inflammatory drugs protect mouse cochlea against acoustic injury. Tohoku J Exp Med 216(1):53–59

    Article  CAS  PubMed  Google Scholar 

  17. Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D et al (2010) Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res 66(4):345–352

    Article  CAS  PubMed  Google Scholar 

  18. Takemura K, Komeda M, Yagi M, Himeno C, Izumikawa M, Doi T et al (2004) Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig. Hear Res 196(1–2):58–68

    Article  CAS  PubMed  Google Scholar 

  19. Yang SZ, Cai QF, Vethanayagam RR, Wang JM, Yang WP, Hu BH (2016) Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma. Hear Res 333:283–294

    Article  CAS  PubMed  Google Scholar 

  20. Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D et al (2014) Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 11(1):173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel M, Hu Z, Bard J, Jamison J, Cai Q, Hu BH (2013) Transcriptome characterization by RNA-Seq reveals the involvement of the complement components in noise-traumatized rat cochleae. Neuroscience 248C:1–16

    Article  CAS  Google Scholar 

  22. Cho Y, Gong TW, Kanicki A, Altschuler RA, Lomax MI (2004) Noise overstimulation induces immediate early genes in the rat cochlea. Brain Res Mol Brain Res 130(1–2):134–148

    Article  CAS  PubMed  Google Scholar 

  23. Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM (2002) Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope 112(9):1627–1634

    Article  CAS  PubMed  Google Scholar 

  24. Miyao M, Firestein GS, Keithley EM (2008) Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope 118(10):1801–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han Y, Hong L, Zhong C, Chen Y, Wang Y, Mao X et al (2012) Identification of new altered genes in rat cochleae with noise-induced hearing loss. Gene 499(2):318–322

    Article  CAS  PubMed  Google Scholar 

  26. Tornabene SV, Sato K, Pham L, Billings P, Keithley EM (2006) Immune cell recruitment following acoustic trauma. Hear Res 222(1–2):115–124

    Article  CAS  PubMed  Google Scholar 

  27. Tan WJ, Thorne PR, Vlajkovic SM (2016) Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 146(2):219–230

    Article  CAS  PubMed  Google Scholar 

  28. Sarlus H, Fontana JM, Tserga E, Meltser I, Cederroth CR, Canlon B (2019) Circadian integration of inflammation and glucocorticoid actions: implications for the cochlea. Hear Res 377:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matern M, Vijayakumar S, Margulies Z, Milon B, Song Y, Elkon R et al (2017) Gfi1Cre mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells. Sci Rep 7:42079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okano T, Nakagawa T, Kita T, Kada S, Yoshimoto M, Nakahata T et al (2008) Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea. J Neurosci Res 86(8):1758–1767

    Article  CAS  PubMed  Google Scholar 

  31. Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 83(4):575–583

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi M, Harris JP (1988) Anatomic distribution and localization of immunocompetent cells in normal mouse endolymphatic sac. Acta Otolaryngol 106(5–6):409–416

    Article  CAS  PubMed  Google Scholar 

  33. Yang W, Vethanayagam RR, Dong Y, Cai Q, Hu BH (2015) Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 303:1–15

    Article  CAS  PubMed  Google Scholar 

  34. Dong Y, Zhang C, Frye M, Yang W, Ding D, Sharma A et al (2018) Differential fates of tissue macrophages in the cochlea during postnatal development. Hear Res 365:110–126

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shi X (2010) Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 342(1):21–30

    Article  PubMed  Google Scholar 

  36. Hirose K, Li SZ (2019) The role of monocytes and macrophages in the dynamic permeability of the blood-perilymph barrier. Hear Res 374:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5):300–312

    Article  CAS  PubMed  Google Scholar 

  38. Haldar M, Murphy KM (2014) Origin, development, and homeostasis of tissue-resident macrophages. Immunol Rev 262(1):25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim JH, Rodriguez-Vazquez JF, Verdugo-Lopez S, Cho KH, Murakami G, Cho BH (2011) Early fetal development of the human cochlea. Anat Rec (Hoboken) 294(6):996–1002

    Article  Google Scholar 

  40. Hirose K, Rutherford MA, Warchol ME (2017) Two cell populations participate in clearance of damaged hair cells from the sensory epithelia of the inner ear. Hear Res 352:70–81

    Article  PubMed  PubMed Central  Google Scholar 

  41. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10(6):453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  CAS  PubMed  Google Scholar 

  43. Fredelius L, Rask-Andersen H (1990) The role of macrophages in the disposal of degeneration products within the organ of Corti after acoustic overstimulation. Acta Otolaryngol 109(1–2):76–82

    Article  CAS  PubMed  Google Scholar 

  44. Frye MD, Yang W, Zhang C, Xiong B, Hu BH (2017) Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hear Res 344:125–134

    Article  PubMed  Google Scholar 

  45. Morizono T, Giebink GS, Paparella MM, Sikora MA, Shea D (1985) Sensorineural hearing loss in experimental purulent otitis media due to Streptococcus pneumoniae. Arch Otolaryngol 111(12):794–798

    Article  CAS  PubMed  Google Scholar 

  46. Ghaheri BA, Kempton JB, Pillers DAM, Trune DR (2007) Cochlear cytokine gene expression in murine acute otitis media. Laryngoscope 117(1):22–29

    Article  CAS  PubMed  Google Scholar 

  47. Ichimiya I, Suzuki M, Hirano T, Mogi G (1999) The influence of pneumococcal otitis media on the cochlear lateral wall. Hear Res 131(1–2):128–134

    Article  CAS  PubMed  Google Scholar 

  48. Kesser BW, Hashisaki GT, Spindel JH, Ruth RA, Scheld WM (1999) Time course of hearing loss in an animal model of pneumococcal meningitis. Otolaryngol Head Neck Surg 120(5):628–637

    Article  CAS  PubMed  Google Scholar 

  49. Klein M, Koedel U, Pfister HW, Kastenbauer S (2003) Morphological correlates of acute and permanent hearing loss during experimental pneumococcal meningitis. Brain Pathol 13(2):123–132

    Article  PubMed  Google Scholar 

  50. Woolf NK, Harris JP (1986) Cochlear pathophysiology associated with inner ear immune responses. Acta Otolaryngol 102(5–6):353–364

    Article  CAS  PubMed  Google Scholar 

  51. Ma C, Billings P, Harris JP, Keithley EM (2000) Characterization of an experimentally induced inner ear immune response. Laryngoscope 110(3 Pt 1):451–456

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi M, Harris JP (1988) Analysis of immunocompetent cells following inner ear immunostimulation. Laryngoscope 98(10):1133–1138

    Article  CAS  PubMed  Google Scholar 

  53. So H, Kim H, Lee JH, Park C, Kim Y, Kim E et al (2007) Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 8(3):338–355

    Article  PubMed  PubMed Central  Google Scholar 

  54. Adams JC, Seed B, Lu N, Landry A, Xavier RJ (2009) Selective activation of nuclear factor kappa B in the cochlea by sensory and inflammatory stress. Neuroscience 160(2):530–539

    Article  CAS  PubMed  Google Scholar 

  55. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H et al (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276(33):31332–31339

    Article  CAS  PubMed  Google Scholar 

  56. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T et al (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195(1):99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164(2):558–561

    Article  CAS  PubMed  Google Scholar 

  58. Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19(1):3–10

    Article  CAS  PubMed  Google Scholar 

  59. Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107(1):13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13(11):460–469

    Article  CAS  PubMed  Google Scholar 

  61. Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V (2006) Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Therap 316(1):71–78

    Article  CAS  Google Scholar 

  62. Vethanayagam RR, Yang W, Dong Y, Hu BH (2016) Toll-like receptor 4 modulates the cochlear immune response to acoustic injury. Cell Death Dis 7(6):e2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oh GS, Kim HJ, Choi JH, Shen A, Kim CH, Kim SJ et al (2011) Activation of lipopolysaccharide-TLR4 signaling accelerates the ototoxic potential of cisplatin in mice. J Immunol 186(2):1140–1150

    Article  CAS  PubMed  Google Scholar 

  64. Xu Y, Chen S, Cao Y, Zhou P, Chen Z, Cheng K (2018) Discovery of novel small molecule TLR4 inhibitors as potent anti-inflammatory agents. Eur J Med Chem 154:253–266

    Article  CAS  PubMed  Google Scholar 

  65. Keithley EM, Wang X, Barkdull GC (2008) Tumor necrosis factor alpha can induce recruitment of inflammatory cells to the cochlea. Otol Neurotol 29(6):854–859

    Article  PubMed  Google Scholar 

  66. Wang X, Truong T, Billings PB, Harris JP, Keithley EM (2003) Blockage of immune-mediated inner ear damage by etanercept. Otol Neurotol 24(1):52–57

    Article  PubMed  Google Scholar 

  67. Nakamoto T, Mikuriya T, Sugahara K, Hirose Y, Hashimoto T, Shimogori H et al (2012) Geranylgeranylacetone suppresses noise-induced expression of proinflammatory cytokines in the cochlea. Auris Nasus Larynx 39(3):270–274

    Article  PubMed  Google Scholar 

  68. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL et al (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187(4):601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Frye MD, Zhang C, Hu BH (2018) Lower level noise exposure that produces only TTS modulates the immune homeostasis of cochlear macrophages. J Neuroimmunol 323:152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fredelius L, Rask-Andersen H, Johansson B, Urquiza R, Bagger-Sjoback D, Wersall J (1988) Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. A light microscopical and electrophysiological investigation in the guinea pig. Acta Otolaryngol 106(1–2):81–93

    Article  CAS  PubMed  Google Scholar 

  71. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  PubMed  Google Scholar 

  72. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80

    Article  CAS  PubMed  Google Scholar 

  73. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670

    Article  CAS  PubMed  Google Scholar 

  74. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G et al (2013) Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153(2):362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T (2003) Inducible cyclooxygenase-derived 15-deoxy(Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J 17(15):2269–2271

    Article  CAS  PubMed  Google Scholar 

  76. Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C et al (2011) Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 184(5):547–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hughes J, Johnson RJ, Mooney A, Hugo C, Gordon K, Savill J (1997) Neutrophil fate in experimental glomerular capillary injury in the rat. Emigration exceeds in situ clearance by apoptosis. Am J Pathol 150(1):223–234

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bellingan GJ, Caldwell H, Howie S, Dransfield I, Haslett C (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157(6):2577–2585

    CAS  PubMed  Google Scholar 

  79. Yimtae K, Song H, Billings P, Harris JP, Keithley EM (2001) Connection between the inner ear and the lymphatic system. Laryngoscope 111(9):1631–1635

    Article  CAS  PubMed  Google Scholar 

  80. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A 110(43):17253–17258

    Article  PubMed  PubMed Central  Google Scholar 

  82. Davis GS, Brody AR, Adler KB (1979) Functional and physiologic correlates of human alveolar macrophage cell shape and surface morphology. Chest 75(2 Suppl):280–282

    Article  CAS  PubMed  Google Scholar 

  83. Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1(5):301–307

    Article  CAS  PubMed  Google Scholar 

  84. Calton MA, Lee D, Sundaresan S, Mendus D, Leu R, Wangsawihardja F et al (2014) A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice. PLoS One 9(5):e94549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fredelius L (1988) Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. A transmission electron microscopy study. Acta Otolaryngol 106(5–6):373–385

    Article  CAS  PubMed  Google Scholar 

  86. Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K et al (2015) Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci. 35(45):15050–15061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Abrashkin KA, Izumikawa M, Miyazawa T, Wang CH, Crumling MA, Swiderski DL et al (2006) The fate of outer hair cells after acoustic or ototoxic insults. Hear Res 218(1–2):20–29

    Article  PubMed  Google Scholar 

  88. Sato E, Shick HE, Ransohoff RM, Hirose K (2008) Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol 506(6):930–942

    Article  PubMed  Google Scholar 

  89. Lang H, Ebihara Y, Schmiedt RA, Minamiguchi H, Zhou D, Smythe N et al (2006) Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes. J Comp Neurol 496(2):187–201

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bas E, Goncalves S, Adams M, Dinh CT, Bas JM, Van De Water TR et al (2015) Spiral ganglion cells and macrophages initiate neuro-inflammation and scarring following cochlear implantation. Front Cell Neurosci 9:303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruitenberg MJ, Vukovic J, Blomster L, Hall JM, Jung S, Filgueira L et al (2008) CX3CL1/fractalkine regulates branching and migration of monocyte-derived cells in the mouse olfactory epithelium. J Neuroimmunol 205(1–2):80–85

    Article  CAS  PubMed  Google Scholar 

  92. Jacquelin S, Licata F, Dorgham K, Hermand P, Poupel L, Guyon E et al (2013) CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice. Blood 122(5):674–683

    Article  PubMed  Google Scholar 

  93. Zhang J-M, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang J-M, Li H, Liu B, Brull SJ (2002) Acute topical application of tumor necrosis factor α evokes protein kinase A-dependent responses in rat sensory neurons. J Neurophysiol 88(3):1387–1392

    Article  CAS  PubMed  Google Scholar 

  95. Özaktay AC, Kallakuri S, Takebayashi T, Cavanaugh JM, Asik I, DeLeo JA et al (2006) Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J 15(10):1529–1537

    Article  PubMed  Google Scholar 

  96. Liu C, Glowatzki E, Fuchs PA (2015) Unmyelinated type II afferent neurons report cochlear damage. Proc Natl Acad Sci 112(47):14723–14727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10(4):217–224

    Article  CAS  PubMed  Google Scholar 

  98. Hashimoto S, Billings P, Harris JP, Firestein GS, Keithley EM (2005) Innate immunity contributes to cochlear adaptive immune responses. Audiol Neurootol 10(1):35–43

    Article  PubMed  Google Scholar 

  99. Harris KC, Bielefeld E, Hu BH, Henderson D (2006) Increased resistance to free radical damage induced by low-level sound conditioning. Hear Res 213(1–2):118–129

    Article  CAS  PubMed  Google Scholar 

  100. Campo P, Subramaniam M, Henderson D (1991) The effect of ‘conditioning’ exposures on hearing loss from traumatic exposure. Hear Res 55(2):195–200

    Article  CAS  PubMed  Google Scholar 

  101. Subramaniam M, Henderson D, Campo P, Spongr V (1992) The effect of ‘conditioning’ on hearing loss from a high frequency traumatic exposure. Hear Res 58(1):57–62

    Article  CAS  PubMed  Google Scholar 

  102. Subramaniam M, Henderson D, Spongr V (1993) Effect of low-frequency “conditioning” on hearing loss from high-frequency exposure. J Acoust Soc Am 93(2):952–956

    Article  CAS  PubMed  Google Scholar 

  103. Subramaniam M, Henderson D, Spongr VP (1993) Protection from noise induced hearing loss: is prolonged ‘conditioning’ necessary? Hear Res 65(1–2):234–239

    Article  CAS  PubMed  Google Scholar 

  104. Henselman LW, Henderson D, Subramaniam M, Sallustio V (1994) The effect of ‘conditioning’ exposures on hearing loss from impulse noise. Hear Res 78(1):1–10

    Article  CAS  PubMed  Google Scholar 

  105. Hu BH, Henderson D (1997) Changes in F-actin labeling in the outer hair cell and the Deiters cell in the chinchilla cochlea following noise exposure. Hear Res 110(1–2):209–218

    Article  CAS  PubMed  Google Scholar 

  106. Roy S, Ryals MM, Van den Bruele AB, Fitzgerald TS, Cunningham LL (2013) Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J Clin Invest 123(11):4945–4949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Perez R, Freeman S, Sohmer H (2004) Effect of an initial noise induced hearing loss on subsequent noise induced hearing loss. Hear Res 192(1–2):101–106

    Article  PubMed  Google Scholar 

  108. Zhang C, Frye MD, Sun W, Hu BH (2018) Preconditioning noise alters immune reaction to subsequent acoustic overstimulation in the cochlea. In: 41st Annual midwinter meeting, San Diego, CA

    Google Scholar 

  109. Rarey KE, Curtis LM, Wouter J-F (1993) Tissue specific levels of glucocorticoid receptor within the rat inner ear. Hear Res 64(2):205–210

    Article  CAS  PubMed  Google Scholar 

  110. ten Cate WJ, Curtis LM, Rarey KE (1992) Immunochemical detection of glucocorticoid receptors within rat cochlear and vestibular tissues. Hear Res 60(2):199–204

    Article  PubMed  Google Scholar 

  111. Takumi Y, Nishio S-Y, Mugridge K, Oguchi T, Hashimoto S, Suzuki N et al (2014) Gene expression pattern after insertion of dexamethasone-eluting electrode into the guinea pig cochlea. PLoS One 9(10):e110238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lyu AR, Kim DH, Lee SH, Shin DS, Shin SA, Park YH (2018) Effects of dexamethasone on intracochlear inflammation and residual hearing after cochleostomy: a comparison of administration routes. PLoS One 13(3):e0195230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chandrasekhar SS, Rubinstein RY, Kwartler JA, Gatz M, Connelly PE, Huang E et al (2000) Dexamethasone pharmacokinetics in the inner ear: comparison of route of administration and use of facilitating agents. Otolaryngol Head Neck Surg 122(4):521–528

    CAS  PubMed  Google Scholar 

  114. Nanda S, Bathon JM (2004) Etanercept: a clinical review of current and emerging indications. Expert Opin Pharmacother 5(5):1175–1186

    Article  CAS  PubMed  Google Scholar 

  115. Rahman MU, Poe DS, Choi HK (2001) Etanercept therapy for immune-mediated cochleovestibular disorders: preliminary results in a pilot study. Otol Neurotol 22(5):619–624

    Article  CAS  PubMed  Google Scholar 

  116. Street I, Jobanputra P, Proops D (2006) Etanercept, a tumour necrosis factor α receptor antagonist, and methotrexate in acute sensorineural hearing loss. J Laryngol Otol 120(12):1064–1066

    Article  CAS  PubMed  Google Scholar 

  117. Matteson EL, Choi HK, Poe DS, Wise C, Lowe VJ, McDonald TJ et al (2005) Etanercept therapy for immune-mediated cochleovestibular disorders: a multi-center, open-label, pilot study. Arthritis Care Res 53(3):337–342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health [R01DC010154 (BHH)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo hua Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, B.h., Zhang, C. (2020). Immune System and Macrophage Activation in the Cochlea: Implication for Therapeutic Intervention. In: Pucheu, S., Radziwon, K., Salvi, R. (eds) New Therapies to Prevent or Cure Auditory Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-40413-0_5

Download citation

Publish with us

Policies and ethics