Skip to main content

Algorithms of 3D Wind Field Reconstructing by Lidar Remote Sensing Data

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11974))

  • 687 Accesses

Abstract

In this paper, we analyzed the performance of wind vector field recovery from the wind lidar measurements. Wind lidar (LIDAR – Light Identification Detection And Ranging) remotely measures the wind radial speed by using the Doppler principle. Algorithms of the wind vector reconstruction using different versions of the least squares method are considered. In particular, the versions of weighted least squares (WLS) are considered, as well as the use of data spikes filtering procedures in the source data. The weights were calculated inversely with the local approximation error. As the initial data, the data of real measurements obtained in various wind conditions were used. The situations of a stationary wind field, a wind field with speed gusts, a wind field with fluctuations in direction, a wind field of variable speed and direction are considered. Lidar data were obtained for a region with a low-hilly terrain; therefore, even in the case of a stationary in time, the wind field was characterized by spatial heterogeneity. The questions of the use of regularization methods are considered. The analysis of the influence of the size of the averaging region on the quality of the recovery process was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lhermitte, R.M., Atlas, D.: Precipitation motion by pulse Doppler. In: Ninth Weather Radar Conference, Kansas City, American Meteorological Society, pp. 218–223 (1961, preprints)

    Google Scholar 

  2. Gao, J., Droegemeier, K.K., Gong, J., Xu, Q.: A method for retrieving mean horizontal wind profiles from single-doppler radar observations contaminated by aliasing. Mon. Weather Rev. 12, 1399–1409 (2004)

    Article  Google Scholar 

  3. Teschke, G., Lehmann, V.: Mean wind vector estimation using the velocity–azimuth display (VAD) method: an explicit algebraic solution. Atmos. Meas. Tech. 10, 3265–3271 (2017)

    Article  Google Scholar 

  4. Baranov, N., Petrov, G., Shiriaev, I.: Wind speed vector restoration algorithm. In: EPJ Web of Conferences, vol. 176, p. 06012 (2018)

    Article  Google Scholar 

  5. Petrov, G., Baranov, N.: Data processing technique for the all-fiber wind profiler. In: Proceedings of SPIE 104290G (2017)

    Google Scholar 

  6. Shenghui, Z., Ming, W., Lijun, W., Chang, Z., Minghu, Z.: Sensitivity analysis of the VVP wind retrieval method for single-doppler weather radars. J. Atmos. Oceanic Technol. 31, 1289–1300 (2014)

    Article  Google Scholar 

  7. Li, N., Wei, M., Mu, X., Zhao, Ch.: A support vector machine-based VVP wind retrieval method. Atmos. Sci. Lett. 16, 331–337 (2015)

    Article  Google Scholar 

  8. Baranov, N., Lemishchenko, E.: Windshear identification algorithms by doppler pulse lidar. In: ITM Web of Conferences, vol. 24, p. 01011 (2018)

    Article  Google Scholar 

  9. Bakhavalov, N.S.: Numerical Methods: Analysis, Algebra, Ordinary Differential Equations. MIR Publishers, Moscow (1977)

    Google Scholar 

  10. Tikhonov, A., Arsenin, V.Y.: Solution of Ill-Posed Problems. Winston & Sons, Washington (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baranov, N. (2020). Algorithms of 3D Wind Field Reconstructing by Lidar Remote Sensing Data. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics