Skip to main content

Cooling, Freezing, Thawing and Crystallization

  • Chapter
  • First Online:
Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy

Abstract

Freezing at subzero temperatures is widely used to preserve quality of food products and obtain minimal deterioration of original colour, flavour, texture and other organoleptic and nutritional properties of foods. Existing freezing preservation technique goals to avoid formation of large ice crystals inside the foods by control the heat removal. This chapter discusses the physical aspects of water and food materials freezing, regulation of freezing processes, dehydrofreezing as well as different methods to improve freezing, including application of physical treatments, such as ultrasound, microwaves, radiofrequencies, high pressure, electric field, and vacuum cooling. More detailed discussion concerns the effects induced by electric fields (static, AC and PEE) on nucleation and crystallisation, including the results of PEF application to assist freezing, dehydro-freezing, vacuum cooling/freezing, crystallisation, and ice pressing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya PV, Bahadur V (2018) Fundamental interfacial mechanisms underlying electrofreezing. Adv Colloid Interf Sci 251:26–43

    Article  CAS  Google Scholar 

  • Adams GDJ, Cook I, Ward KR (2015) The principles of freeze-drying. In: Wolkers WF, Oldenhof H (eds) Cryopreservation and freeze-drying protocols. Springer, New York, pp 121–143

    Chapter  Google Scholar 

  • Aguilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering. Aspen Publishers, Inc/A Wolters Kluwer Company, Gaithersburg

    Google Scholar 

  • Alessandria V, Giacosa S, Campolongo S et al (2013) Yeast population diversity on grapes during on-vine withering and their dynamics in natural and inoculated fermentations in the production of icewines. Food Res Int 54:139–147

    Article  CAS  Google Scholar 

  • Ando Y, Maeda Y, Mizutani K et al (2016) Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. J Food Eng 169:114–121

    Article  CAS  Google Scholar 

  • Anese M, Manzocco L, Panozzo A et al (2012) Effect of radiofrequency assisted freezing on meat microstructure and quality. Food Res Int 46:50–54

    Article  Google Scholar 

  • Bai Y, Luan Z (2018) The effect of high-pulsed electric field pretreatment on vacuum freeze drying of sea cucumber. Int J Appl Electromagn Mech 57:1–10. https://doi.org/10.3233/JAE-180009

    Article  Google Scholar 

  • Balasubramaniam VM, Martinez-Monteagudo SI, Gupta R (2015) Principles and application of high pressure-based technologies in the food industry. Annu Rev Food Sci Technol 6:435–462

    Article  CAS  PubMed  Google Scholar 

  • Ben Ammar J, Van Hecke E, Lebovka N, Vorobiev E, Lanoisellé J-L (2009) Pulsed electric fields improves freezing process. In: Vorobiev E, Lebovka N, Hecke E Van, Lanoiselle J-L (eds) Proceedings of the international conference on Bio and Food Electrotechnologies, BFE2009. Université de Technologie de Compiégne, Compiégne, France, pp 95–100

    Google Scholar 

  • Ben Ammar J, Lanoisellé J-L, Lebovka NI, , Vorobiev E, LanoisellÕ J-L (2010a) Effect of a pulsed electric field and osmotic treatment on freezing of potato tissue. Food Biophys 5:247–254

    Google Scholar 

  • Ben Ammar J, Van Hecke E, Vorobiev E et al (2010b) Surgélation et cryodessiccation des tissus végétaux: apports d’un prétraitement par champs électriques puisés. Rev Gen Du Froid nВ 1107:29–38

    Google Scholar 

  • Ben Ammar J, Van Hecke E, Lebovka N, Vorobiev E, Lanoisellé J-L (2011) Freezing and freeze-drying of vegetables: benefits of a pulsed electric fields pre-treatment. In: CIGR section VI International Symposium on “Towards a Sustainable Food Chain Food Process, Bioprocessing and Food Quality Management.” ONIRIS, Nantes, France, pp 1–6

    Google Scholar 

  • Bermudez-Aguirre D (ed) (2017) Ultrasound: advances in food processing and preservation. Academic, London

    Google Scholar 

  • Blanch M, Sanchez-Ballesta MT, Escribano MI, Merodio C (2015) The relationship between bound water and carbohydrate reserves in association with cellular integrity in Fragaria vesca stored under different conditions. Food Bioprocess Technol 8:875–884

    Article  CAS  Google Scholar 

  • Bogh-Sorensen L (2006) Recommendations for the processing and handling of frozen foods. International Institute of Refrigeration (IIR)

    Google Scholar 

  • Bowen AJ (2010) Managing the quality of icewines. In: Reynolds A (ed) Managing wine quality: oenology and wine quality. Woodhead Publishing Limited/CRC Press LLC, Cambridge, UK/Boca Raton, pp 523–552

    Chapter  Google Scholar 

  • Carbonell-Capella JM, Parniakov O, Barba FJ et al (2016) “Ice” juice from apples obtained by pressing at subzero temperatures of apples pretreated by pulsed electric fields. Innov Food Sci Emerg Technol 33:187–194. https://doi.org/10.1016/j.ifset.2015.12.016

    Article  CAS  Google Scholar 

  • Carpenter K, Bahadur V (2015) Electrofreezing of water droplets under electrowetting fields. Langmuir 31:2243–2248

    Article  CAS  PubMed  Google Scholar 

  • Cheng H-P, Lin C-T (2007) The morphological visualization of the water in vacuum cooling and freezing process. J Food Eng 78:569–576

    Article  Google Scholar 

  • Cheng L, Sun D-W, Zhu Z, Zhang Z (2017) Emerging techniques for assisting and accelerating food freezing processes: a review of recent research progresses. Crit Rev Food Sci Nutr 57:769–781

    Article  PubMed  Google Scholar 

  • Chiralt A, Martı́nez-Navarrete N, Martı́nez-Monzó J et al (2001) Changes in mechanical properties throughout osmotic processes: cryoprotectant effect. J Food Eng 49:129–135

    Article  Google Scholar 

  • Crandles M, Reynolds AG, Khairallah R, Bowen A (2015) The effect of yeast strain on odor active compounds in Riesling and Vidal blanc icewines. LWT- Food Sci Technol 64:243–258

    Article  CAS  Google Scholar 

  • Crank J (1979) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  • Dalvi-Isfahan M, Hamdami N, Le-Bail A (2016) Effect of freezing under electrostatic field on the quality of lamb meat. Innov Food Sci Emerg Technol 37:68–73

    Article  Google Scholar 

  • Dalvi-Isfahan M, Hamdami N, Xanthakis E, Le-Bail A (2017) Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J Food Eng 195:222–234

    Article  Google Scholar 

  • De Vito F, Ferrari G, Lebovka NI et al (2008) Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food Bioprocess Technol 1:307–313

    Article  Google Scholar 

  • Delgado AE, Sun D-W (2001) Heat and mass transfer models for predicting freezing processes--a review. J Food Eng 47:157–174

    Article  Google Scholar 

  • Delgado AE, Sun D-W (2011) Ultrasound-assisted freezing. In: Feng H, Barbosa-Cánovas GV, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 495–509

    Chapter  Google Scholar 

  • Deora NS, Misra NN, Deswal A et al (2013) Ultrasound for improved crystallisation in food processing. Food Eng Rev 5:36–44

    Article  Google Scholar 

  • Deshpande SS, Cheryan M, Sathe SK et al (1984) Freeze concentration of fruit juices. Crit Rev Food Sci Nutr 20:173–248

    Article  CAS  PubMed  Google Scholar 

  • Drummond L, Zheng L, Sun D-W (2014) Vacuum cooling of foods. In: Sun D-W (ed) Emerging Technologies for Food Processing. Academic Press, London, UK, pp 477–494

    Google Scholar 

  • Dufour L (1862) Ueber das Gefrieren des Wassers und Гјber die Bildung des Hagels (About the freezing of the water and the formation of the hail). Ann Phys 190:530–554

    Article  Google Scholar 

  • Duroudier J-P (2016) Crystallization and crystallizers. ISTE Press Ltd/Elsevier Ltd, London/Oxford

    Google Scholar 

  • Espinosa JR, Navarro C, Sanz E et al (2016) On the time required to freeze water. J Chem Phys 145:211922

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Barbosa-Cánovas GV, Weiss J (eds) (2011) Ultrasound technologies for food and bioprocessing. Springer, New York

    Google Scholar 

  • Feng C, Drummond L, Zhang Z et al (2012) Vacuum cooling of meat products: current state-of-the-art research advances. Crit Rev Food Sci Nutr 52:1024–1038

    Article  PubMed  Google Scholar 

  • Fennema OR, Powrie WD, Marth EH (1973) Low-temperature preservation of foods and living matter. Marcel Dekker, New York

    Google Scholar 

  • Fincan M, Dejmek P (2002) In situ visualization of the effect of a pulsed electric field on plant tissue. J Food Eng 55:223–230. https://doi.org/10.1016/S0260-8774(02)00079-1

    Article  Google Scholar 

  • Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge

    Google Scholar 

  • Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375–388

    CAS  PubMed  Google Scholar 

  • Gránásy L, Pusztai T, James PF (2002) Interfacial properties deduced from nucleation experiments: a Cahn--Hilliard analysis. J Chem Phys 117:6157–6168

    Article  CAS  Google Scholar 

  • Hafezparast-Moadab N, Hamdami N, Dalvi-Isfahan M, Farahnaky A (2018) Effects of radiofrequency-assisted freezing on microstructure and quality of rainbow trout (Oncorhynchus mykiss) fillet. Innov Food Sci Emerg Technol 47:81–87

    Article  Google Scholar 

  • Haggis GH, Hasted JB, Buchanan TJ (1952) The dielectric properties of water in solutions. J Chem Phys 20:1452–1465

    Article  CAS  Google Scholar 

  • Hammadi Z, Veesler S (2009) New approaches on crystallization under electric fields. Prog Biophys Mol Biol 101:38–44

    Article  CAS  PubMed  Google Scholar 

  • Hao H, Zhong J, Yin Q, Wang X (2018) Editorial for the thematic issues “crystallization for pharmaceutical and food science”. Curr Pharm Des 24:1–2

    Article  CAS  Google Scholar 

  • Hozumi T, Saito A, Okawa S, Watanabe K (2003) Effects of electrode materials on freezing of supercooled water in electric freeze control. Int J Refrig 26:537–542

    Article  CAS  Google Scholar 

  • Hozumi T, Saito A, Okawa S, Eshita Y (2005) Effects of shapes of electrodes on freezing of supercooled water in electric freeze control. Int J Refrig 28:389–395

    Article  CAS  Google Scholar 

  • Hu B, Huang K, Zhang P et al (2015) Pulsed electric field effects on sucrose nucleation at low supersaturation. Sugar Tech An Int J Sugar Crop Relat Ind 17:77–84

    CAS  Google Scholar 

  • Ilicali C, Teik TH, Shian LP (1999) Improved formulations of shape factors for the freezing and thawing time prediction of foods. LWT – Food Sci Technol 32:312–315

    Article  CAS  Google Scholar 

  • Isard JO (1977) Calculation of the influence of an electric field on the free energy of formation of a nucleus. Philos Mag 35:817–819

    Article  CAS  Google Scholar 

  • Islam MN, Zhang M, Adhikari B (2017) Ultrasound-assisted freezing of fruits and vegetables: design, development, and applications. In: Barbosa-Cánovas GV, Pastore GM, Candoğan K et al (eds) Global food security and wellness. Springer, New York, pp 457–487

    Chapter  Google Scholar 

  • Jalté M, Lanoiselle J-L, Lebovka NI, Vorobiev E (2009) Freezing of potato tissue pre-treated by pulsed electric fields. LWT – Food Sci Technol 42:576–580

    Article  CAS  Google Scholar 

  • James C, Purnell G, James SJ (2014) A critical review of dehydrofreezing of fruits and vegetables. Food Bioprocess Technol 7:1219–1234

    Article  Google Scholar 

  • Jha PK, Sadot M, Vino SA et al (2017) A review on effect of DC voltage on crystallization process in food systems. Innov Food Sci Emerg Technol 42:204–219

    Article  CAS  Google Scholar 

  • Jha PK, Xanthakis E, Jury V et al (2018) Advances of electro-freezing in food processing. Curr Opin Food Sci 23:85–89

    Article  Google Scholar 

  • Jia G, He X, Nirasawa S et al (2017) Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin. J Food Eng 204:18–26

    Article  CAS  Google Scholar 

  • Khan AA, Vincent JFV (1996) Mechanical damage induced by controlled freezing in apple and potato. J Texture Stud 27:143–157

    Article  Google Scholar 

  • Kiani H, Zheng L, Sun D-W (2015) Ultrasonic assistance for food freezing. In: Sun D-W (ed) Emerging technologies for food processing, 2nd edn. Academic, London, pp 495–513

    Google Scholar 

  • Kirkey C, Braden T (2014) An introduction to ice cider in Quebec: a preliminary overview. J East Townships Stud/Rev d’études des Cantons-de-l'Est 43:47–62

    Google Scholar 

  • Knorr D, Schlueter O, Heinz V (1998) Impact of high hydrostatic pressure on phase transitions of foods. Food Technol 52:42–45

    Google Scholar 

  • Koop T, Murray BJ (2016) A physically constrained classical description of the homogeneous nucleation of ice in water. J Chem Phys 145:211915

    Article  PubMed  CAS  Google Scholar 

  • Le Bail A (2004) Freezing processes: physical aspects. In: Hui YH, Hui YH, Legarretta IG et al (eds) Handbook of frozen foods. Marcel Dekker, Inc., New York, pp 10–20

    Google Scholar 

  • Le Bail A, Chevalier D, Mussa DM, Ghoul M (2002) High pressure freezing and thawing of foods: a review. Int J Refrig 25:504–513

    Article  Google Scholar 

  • Li T, Donadio D, Russo G, Galli G (2011) Homogeneous ice nucleation from supercooled water. Phys Chem Chem Phys 13:19807–19813

    Article  CAS  PubMed  Google Scholar 

  • Lin H-I, Chou S-F (2001) Theoretical model of a thin-film vacuum freezing ice production (VFIP) method. J Chinese Inst Eng 24:463–471

    Article  Google Scholar 

  • López-Leiva M, Hallström B (2003) The original Plank equation and its use in the development of food freezing rate predictions. J Food Eng 58:267–275

    Article  Google Scholar 

  • Mascheroni RH (2012) Operations in food refrigeration. CRC Press/Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Mazur P (1966) Physical and chemical basis of injury in single celled microorganisms subjected to freezing and thawing. In: Meryman HT (ed) Cryobiology. Academic, London/New York, pp 213–315

    Google Scholar 

  • Mazur P, Leibo SP, Chu EHY (1972) A two-factor hypothesis of freezing injury: evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71:345–355

    Article  CAS  PubMed  Google Scholar 

  • McDonald K, Sun D-W (2000) Vacuum cooling technology for the food processing industry: a review. J Food Eng 45:55–65

    Article  Google Scholar 

  • Meiying C, Xuemei G, Wencheng W et al (2008) The discuss of integration with PEF and freeze concentration in processing fruit juice. Chinese Agric Sci Bull 4:95

    Google Scholar 

  • Mok JH, Choi W, Park SH et al (2015) Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing. Int J Refrig 50:137–145

    Article  CAS  Google Scholar 

  • Mok JH, Her J-Y, Kang T et al (2017) Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) combination technology on the extension of supercooling for chicken breasts. J Food Eng 196:27–35

    Article  Google Scholar 

  • Motluk A (2003) Extreme winemaking. New Sci 180:54–55

    Google Scholar 

  • Muldrew K, McGann LE (1990) Mechanisms of intracellular ice formation. Biophys J 57:525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musabelliu N (2013) Sweet, reinforced and fortified wines. In: Mencarelli F, Tonutti P (eds) Sweet, reinforced and fortified wines. Wiley, Ltd, pp 301–304

    Chapter  Google Scholar 

  • Nguyen TK, Mondor M, Ratti C (2018) Shrinkage of cellular food during air drying. J Food Eng 230:8–17

    Article  CAS  Google Scholar 

  • Orlowska M, Havet M, Le-Bail A (2009) Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res Int 42:879–884

    Article  Google Scholar 

  • Otero L, Sanz PD (2016) High-pressure shift freezing. In: Handbook of frozen food processing and packaging. CRC Press/Taylor & Francis Group, Boca Raton, pp 684–701

    Google Scholar 

  • Parniakov O, Lebovka NI, Bals O, Vorobiev E (2015) Effect of electric field and osmotic pre-treatments on quality of apples after freezing-thawing. Innov Food Sci Emerg Technol 29:23–30. https://doi.org/10.1016/j.ifset.2015.03.011

    Article  CAS  Google Scholar 

  • Parniakov O, Bals O, Lebovka N, Vorobiev E (2016a) Effects of pulsed electric fields assisted osmotic dehydration on freezing-thawing and texture of apple tissue. J Food Eng 183:32–38

    Article  CAS  Google Scholar 

  • Parniakov O, Bals O, Lebovka N, Vorobiev E (2016b) Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innov Food Sci Emerg Technol 35:52–57. https://doi.org/10.1016/j.ifset.2016.04.002

    Article  Google Scholar 

  • Parniakov O, Bals O, Mykhailyk V et al (2016c) Unfreezable water in apple treated by pulsed electric fields: impact of osmotic impregnation in glycerol solutions. Food Bioprocess Technol 9:243–251

    Article  CAS  Google Scholar 

  • Parniakov O, Adda P, Bals O et al (2017) Effects of pulsed electric energy on sucrose nucleation in supersaturated solutions. J Food Eng 199:19–26

    Article  CAS  Google Scholar 

  • Patel SM, Jameel F, Sane SU, Kamat M (2015) Lyophilization process design and development using QbD principles. In: Jameel F, Hershenson S, Khan MA, Martin-Moe S (eds) Quality by design for biopharmaceutical drug product development. Springer, New York, pp 303–329

    Chapter  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  • Petzold G, Moreno J, Lastra P et al (2015) Block freeze concentration assisted by centrifugation applied to blueberry and pineapple juices. Innov Food Sci Emerg Technol 30:192–197

    Article  CAS  Google Scholar 

  • Pham QT (2014) Food freezing and thawing calculations. Springer, New York

    Book  Google Scholar 

  • Plank R (1913) Die gefrierdauer von eisblocken (The freezing time of ice blocks). Zeitschrift fur die gesamte Kalte Ind 20:109–114

    Google Scholar 

  • Plank R (1914) Beitrage zur Berechnung und Bewertung der Gefriergeschwindigkeit von Lebensmitteln (contributions to the calculation and evaluation of the freezing rate of food). Zeitschrift fur die gesamte Kalte Ind 3:1–16

    Google Scholar 

  • Pruppacher HR (1973) Electrofreezing of supercooled water. Pure Appl Geophys 104:623–634

    Article  Google Scholar 

  • Rau W (1951) Eiskeimbildung durch dielektrische Polarisation. Zeitschrift für Naturforsch A 6:649–657

    Google Scholar 

  • Reid DS (1993) Basic physical phenomena in the freezing and thawing of plant and animal tissues. In: Mallett CP (ed) Frozen Food Technology. Blackie Academic and Professional, London, UK, pp 1–19

    Google Scholar 

  • Reid DS (1997) Overview of physical/chemical aspects of freezing. In: Erickson MC, Hung Y-C (eds) Quality in frozen food. Springer, New York, pp 10–28

    Chapter  Google Scholar 

  • Reis FR (ed) (2014) Vacuum drying for extending food shelf-life. Springer, Cham

    Google Scholar 

  • Salt RW (1961) Effect of electrostatic field on freezing of supercooled water and insects. Science (80- ) 133:458–459

    Article  CAS  Google Scholar 

  • Sánchez J, Ruiz Y, Auleda JM et al (2009) Review. Freeze concentration in the fruit juices industry. Food Sci Technol Int 15:303–315. https://doi.org/10.1177/1082013209344267

    Article  Google Scholar 

  • Sanz PD, Otero L (2015) High-pressure freezing. In: Sun D-W (ed) Emerging technologies for food processing, 2nd edn. Academic, London, pp 515–538

    Google Scholar 

  • Shayanfar S, Chauhan OP, Toepfl S, Heinz V (2013) The interaction of pulsed electric fields and texturizing-antifreezing agents in quality retention of defrosted potato strips. Int J Food Sci Technol 48:1289–1295

    Article  CAS  Google Scholar 

  • Shayanfar S, Chauhan OP, Toepfl S, Heinz V (2014) Pulsed electric field treatment prior to freezing carrot discs significantly maintains their initial quality parameters after thawing. Int J Food Sci Technol 49:1224–1230

    Article  CAS  Google Scholar 

  • Shete YV, Chavan SM, Champawat PS, Jain SK (2018) Reviews on osmotic dehydration of fruits and vegetables. J Pharmacogn Phytochem 7:1964–1969

    CAS  Google Scholar 

  • Shichiri T, Araki Y (1986) Nucleation mechanism of ice crystals under electrical effect. J Cryst Growth 78:502–508

    Article  CAS  Google Scholar 

  • Shichiri T, Nagata T (1981) Effect of electric currents on the nucleation of ice crystals in the melt. J Cryst Growth 54:207–210

    Article  CAS  Google Scholar 

  • Singh RK, Ozen BF (2010) Vacuum cooling. In: Heldman DR, Moraru CI (eds) Encyclopedia of agricultural, food, and biological engineering. CRC Press/Taylor & Francis Group, Boca Raton, pp 1777–1782

    Chapter  Google Scholar 

  • Speedy RJ, Angell CA (1976) Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45 °C. J Chem Phys 65:851–858

    Article  CAS  Google Scholar 

  • Sun D-W, Li B (2003) Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J Food Eng 57:337–345

    Article  Google Scholar 

  • Swer TL, Mukhim C, Sehrawat R, Gaikwad ST (2018) Applications of freezing technology in fruits and vegetables. In: Rachna S, Khursheed AK, Megh RG, Prodyut KP (eds) Technological interventions in the processing of fruits and vegetables. Apple Academic Press Inc., Oakville, pp 179–208

    Google Scholar 

  • SzymoЕ„ska J, Krok F, Komorowska-Czepirska E, Rebilas K (2003) Modification of granular potato starch by multiple deep-freezing and thawing. Carbohydr Polym 52:1–10

    Article  Google Scholar 

  • Thivya S, Sree VG (2015) Breakdown study of water with different conductivities. In: Proceedings of 13th IRF international conference, Bengaluru, pp 39–45

    Google Scholar 

  • Toner M, Cravalho EG, Karel M (1990) Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys 67:1582–1593

    Article  Google Scholar 

  • Tremeac B, Datta AK, Hayert M, Le-Bail A (2007) Thermal stresses during freezing of a two-layer food. Int J Refrig 30:958–969

    Article  Google Scholar 

  • Volmer M, Weber A (1926) Keimbildung in ubersättigten Gebilden. Z Phys Chem 119:277–301

    CAS  Google Scholar 

  • Vorobiev E, Lebovka NI (2006) Extraction of intercellular components by pulsed electric fields. In: Raso J, Heinz V (eds) Pulsed electric fields technology for the food industry. Springer, New York, pp 153–193

    Chapter  Google Scholar 

  • Wang Y, Truong T (2017) Glass transition and crystallization in foods. In: Bhandari B, Roos YH (eds) Non-equilibrium states and glass transitions in foods. Woodhead Publishing, Duxford, pp 153–172

    Chapter  Google Scholar 

  • Wang C-Y, Huang H-W, Hsu C-P, Yang BB (2016a) Recent advances in food processing using high hydrostatic pressure technology. Crit Rev Food Sci Nutr 56:527–540

    Article  PubMed  Google Scholar 

  • Wang D, Zhang Z, Wang M (2016b) Modeling of vacuum cooling for porous food: size and pore diameter. J Comput Theor Nanosci 13:2259–2263

    Article  CAS  Google Scholar 

  • Weng L, Li W, Zuo J (2011) Two applications of the thermogram of the alcohol/water binary system with compositions of cryobiological interests. Cryobiology 62:210–217

    Article  CAS  PubMed  Google Scholar 

  • Wilson PW, Osterday K, Haymet AD (2009) The effects of electric field on ice nucleation may be masked by the inherent stochastic nature of nucleation. CryoLetters 30:96–99

    CAS  PubMed  Google Scholar 

  • Wolfe J, Bryant G, Koster KL (2002) What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23:157–166

    PubMed  Google Scholar 

  • Xanthakis E, Havet M, Chevallier S et al (2013) Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innov Food Sci Emerg Technol 20:115–120

    Article  Google Scholar 

  • Xanthakis E, Le-Bail A, Ramaswamy H (2014) Development of an innovative microwave assisted food freezing process. Innov Food Sci Emerg Technol 26:176–181

    Article  Google Scholar 

  • Xanthakis E, Le-Bail A, Havet M (2015) Freezing combined with electrical and magnetic disturbances. In: Sun D-W (ed) Emerging technologies for food processing, 2nd edn. Academic Press, London, pp 563–579

    Google Scholar 

  • Xu B, Zhang M, Ma H (2017) Food freezing assisted with ultrasound. In: Bermudez-Aguirre D (ed) Ultrasound: advances for food processing and preservation. Academic Press Inc., London, pp 293–321

    Chapter  Google Scholar 

  • Zaragoza A, Espinosa JR, Ramos R et al (2018) Phase boundaries, nucleation rates and speed of crystal growth of the water-to-ice transition under an electric field: a simulation study. J Phys Condens Matter 30:174002

    Article  PubMed  Google Scholar 

  • Zaritzky N (2006) Physical-chemical principles in freezing. In: Sun D-W (ed) Handbook of frozen food processing and packaging. CRC Press/Taylor & Francis Group, Boca Raton, pp 3–31

    Google Scholar 

  • Zhang Z, Liu X-Y (2018) Control of ice nucleation: freezing and antifreeze strategies. Chem Soc Rev 47:7116–7139

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Li W, Chen C et al (2013a) Molecular dynamics investigation of the effects of concentration on hydrogen bonding in aqueous solutions of methanol, ethylene glycol and glycerol. Bull Kor Chem Soc 34:2711–2719

    Article  CAS  Google Scholar 

  • Zhang N, Li W, Chen C et al (2013b) Molecular dynamics study on water self-diffusion in aqueous mixtures of methanol, ethylene glycol and glycerol: investigations from the point of view of hydrogen bonding. Mol Phys 111:939–949

    Article  CAS  Google Scholar 

  • Zhang M, Chen H, Mujumdar AS et al (2017) Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit Rev Food Sci Nutr 57:1239–1255

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Zhu Z, Sun D-W (2018) Using power ultrasound to accelerate food freezing processes: effects on freezing efficiency and food microstructure. Crit Rev Food Sci Nutr 58(16):2842–2853

    Article  PubMed  Google Scholar 

  • Zhu S, Ramaswamy HS (2016) Pressure-shift freezing effects on texture and microstructure of foods. In: Ahmed J, Ramaswamy HS, Kasapis S, Boye JI (eds) Novel food processing: effects on rheological and functional properties. CRC Press/Taylor & Francis Group, Boca Raton, pp 323–336

    Google Scholar 

  • Zhu Z, Li Y, Sun D-W, Wang H-W (2019) Developments of mathematical models for simulating vacuum cooling processes for food products--a review. Crit Rev Food Sci Nutr 59:715–727

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorobiev, E., Lebovka, N. (2020). Cooling, Freezing, Thawing and Crystallization. In: Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-40917-3_7

Download citation

Publish with us

Policies and ethics