Skip to main content

Microbiome Research and Aging

  • Chapter
  • First Online:
Clinical Genetics and Genomics of Aging

Abstract

The human microbiome represents a growing area of research that integrates the biomedical and clinical sciences. Through the biomedical research, depth understanding of the molecular characteristics of the host and the microbiota has arisen. The clinical and epidemiological research allows the understanding of the interactions between the host and the microbiota over time.

Research in the field of microbiome and aging has allowed having a broader vision and a better understanding of the complexities and functionality of different microorganisms in health and disease. From the evidence, it is known that aging is a potential modifier of the composition and function of the human microbiome. Actually, it is clear that not only the quantity but the diversity of microorganisms are strongly associated with the health and disease process.

The aim of this chapter is to review the importance of the human microbiota composition at the genomic level and its relationship to clinical responses in aging. All this knowledge will possibly help to treat specific processes related to aging and encourage to keep searching to understand the relation of the aging process due to the microbiome, as well as thoroughly explore the composition of the microbiome in principal body systems and tracts in aged.

We are born 100% human but we die 90% microbial.”

Mändar Reet

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARAP2:

ArfGAP and RhoGAP domain with ankyrin repeat and PH domain 2

CCL2:

C-C motif chemokine ligand 2

CMV:

Cytomegalovirus

CXCR4:

C-X-C chemokine receptor type 4

DAP2:

Dipeptidyl aminopeptidase 2

DNA:

Deoxyribonucleic acid

EBV:

Epstein-Barr virus

FOS:

Fructo-oligosaccharide

Fut-2:

Fucosyltransferase 2

GWAS:

Genome-wide association study

HHV:

Human herpesvirus

HSV-1:

Herpes simplex virus 1

HSV-2:

Herpes simplex virus 2

IBD:

Inflammatory bowel disease

IgA:

Immunoglobulin A

IgG:

Immunoglobulin G

IL-12:

Interleukin 12

IL12RA:

Interleukin 12 receptor A

IL-17:

Interleukin 17

IL23R:

Interleukin 23 receptor

JAK/Stat:

Janus kinase/signal transducer and activator of transcription

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LDL:

Low density level

LINGO2:

Leucine rich repeat and Ig domain containing 2

MHC:

C-type lectin (CLEC), major histocompatibility complex

NOD1:

Nucleotide-binding oligomerization domain-containing protein 1

NOD2:

Nucleotide-binding oligomerization domain-containing protein 2

PLD1:

Phospholipase D1

PUFAs:

Polyunsaturated fatty acids

RNA:

Ribonucleic acid

SCFAs:

Short-chain fatty acids

SLIT3:

Slit homolog 3

Stat 5A:

Signal transducer and activator of transcription 5 A

Stat 5B:

Signal transducer and activator of transcription 5 B

TCR:

T-cell receptor

TGF-β:

Transforming growth factor beta

UBR3:

Ubiquitin protein ligase E3 component n-recognin 3

VDR:

Vitamin D receptor

VPLs:

Virus-like particles

VSCs:

Volatile sulfur compounds

References

  1. Lu M, Wang Z. Linking gut microbiota to aging process: a new target for anti-aging. Food Sci Human Wellness. 2018;7(2):111–9.

    Article  Google Scholar 

  2. Integrative H. The integrative human microbiome project. Nature. 2019;569(7758):641.

    Article  CAS  Google Scholar 

  3. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Article  CAS  Google Scholar 

  4. Clemente J, Pehrsson E, Blaser M, Sandhu K, Gao Z, Wang B, et al. The microbiome of uncontacted Amerindians. Sci Adv. 2015;1(3):e1500183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang B, et al. The human microbiota in health and disease. Engineering. 2017;3(1):71–82.

    Article  Google Scholar 

  6. Sommer F, Anderson J, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15(10):630–8.

    Article  CAS  PubMed  Google Scholar 

  7. Arnold J, Roach J, Azcarate-Peril A. Emerging Technologies for gut microbiome research. Trends Microbiol. 2016;24(11):887–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh R, Chang H, Yan D, Lee K, Ucmak D, Wong K, et al. Influence of diet in the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–8.

    Article  CAS  PubMed  Google Scholar 

  10. Cadwell K. The virome in host health and disease. Immunity. 2015;42(5):805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zarate S, et al. Human Virome Arch Med Res. 2017;48(8):701–16.

    Article  CAS  PubMed  Google Scholar 

  12. Carding S, Davis N, Hoyles L. Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther. 2017;46(9):800–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanschagrin S, Yergeau E. Next-generation sequencing of 16s ribosomal RNA gene amplicons. J Vis Exp. 2014;90:e51709.

    Google Scholar 

  14. Almonacid D, Kraal L, Ossandon F, Budovskaya Y, Cardenas JP, Bik E, et al. 16S rRNA gene sequencing and health reference ranges for 28 clinically relevant microbial taxa from the human gut microbiome. PLoS One. 2017;12(5):e0176555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zapata H, Quagliarello V. The microbiota and Microbiomein aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015;63(4):776–81.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Donaldson G, Lee S, Mazmanian S. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20–32.

    Article  CAS  PubMed  Google Scholar 

  18. Rolig A, Mittge E, Ganz J, Troll J, Melancon E, Wiles T, et al. The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol. 2017;15(2):e2000689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sommer F, Backhed F. Know your neighbor: microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays. 2016;38(5):455–64.

    Article  PubMed  Google Scholar 

  20. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J, et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 2014;15(12):531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Davenport E, Sanders J, Song SJ, Amato K, Clark A, Knight R. The human microbiome in evolution. BMC Biol. 2017;15(1):127.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.

    Article  CAS  PubMed  Google Scholar 

  24. Stewart C, Ajami N, O'Brien J, Hutchinson D, Smith D, Wong M, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forbes J, Azad M, Vehling L, Tun H, Konya T, Guttman D, et al. Association of Exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 2018;172(7):e181161.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bokulich N, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. O’Toole P, Jeffery I. Gut microbiota and aging. Science. 2015;350(6265):1214–5.

    Article  PubMed  CAS  Google Scholar 

  28. Bodogai M, O'Connell J, Kim K, Kim Y, Moritoh K, Chen C, et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci Transl Med. 2018;10(467):eaat4271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fulbright L, Ellermann M, Arthur J. The microbiome and the hallmarks of cancer. PLoS Pathog. 2017;13(9):e1006480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ni J, Wu G, Albenberg L, Tomov V. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017;14(10):573–84.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morimoto R, Cuervo A. Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J Gerontol A Biol Sci Med Sci. 2009;64A(2):167–70.

    Article  CAS  PubMed Central  Google Scholar 

  32. Vaidya A, Mao Z, Tian X, Spencer B, Seluanov A, Gorbunova V. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet. 2014;10(7):e1004511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhou C, Slaughter B, Unruh J, Guo F, Yu Z, Mickey K, et al. Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell. 2014;159(3):530–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ewald C, Landis J, Porter-Abate J, Murphy C, Blackwell T. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature. 2015;519(7541):97–101.

    Article  CAS  PubMed  Google Scholar 

  35. Elderman M, Sovran B, Hugenholtz F, Graversen K, Huijskes M, Houtsma E, et al. The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS One. 2017;12(9):e0184274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Childs B, Durik M, Baker D, van Deursen J. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Qi Y, Jasper H. Preventing age-related decline of gut compartmentalization limits microbiota Dysbiosis and extends lifespan. Cell Host Microbe. 2016;19(2):240–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mihajlovski A, Doré J, Levenez F, Alric M, Brugére J. Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. Environ Microbiol Rep. 2010;2(2):272–80.

    Article  CAS  PubMed  Google Scholar 

  39. Quercia S, Candela M, Giuliani C, Turroni S, Luiselli D, Rampelli S, et al. From lifetime to evolution: timescales of human gut microbiota adaptation. Front Microbiol. 2014;5:587.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. elife. 2017;6:e27014.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Galkin F, Aliper A, Putin E, Kuznetsov I, Gladyshev V, Zhavoronkov A. Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. bioRxiv. 2019. https://doi.org/10.1101/507780.

  42. Chotirmall S, Burke C. Aging and the microbiome: implications for asthma in the elderly? Expert Rev Respir Med. 2015;9(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  43. Yamashita Y, Takeshita T. The oral microbiome and human health. J Oral Sci. 2017;59(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  44. Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P. The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. Mech Ageing Dev. 2017;165(Pt B):180–4.

    Article  PubMed  Google Scholar 

  45. Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 2018;75(1):129–48.

    Article  CAS  PubMed  Google Scholar 

  46. Aas J, Paster B, Stokes L, Olsen I, Dewhirst F. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bek-Thomsen M, Tettelin H, Hance I, Nelson K, Kilian M. Population diversity and dynamics of Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis in the upper respiratory tracts of adults, determined by a nonculture strategy. Infect Immun. 2008;76(5):1889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feres M, Teles F, Teles R, Figueiredo L, Faveri M. The subgingival periodontal microbiota in the aging mouth. Periodontol 2000. 2016;72(1):30–53.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zakaria M, Futura M, Takeshita T, Shibata Y, Sundari R, Eshima N, et al. Oral microbiome in community-dwelling elderly and its relation to oral and general health conditions. Oral Dis. 2017;23(7):973–82.

    Article  CAS  PubMed  Google Scholar 

  50. Terai T, Okumura T, Imai S, Nakao M, Yamaji K, Ito M, et al. Screening of probiotic candidates in human oral bacteria for the prevention of dental disease. PLoS One. 2015;10(6):e128657.

    Article  CAS  Google Scholar 

  51. Flevari A, Theodorakopoulou M, Armaganidis A, Dimopoulos G. Treatment of invasive candidiasis in the elderly: a review. Clin Interv Aging. 2013;8:1199–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Charlson E, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One. 2010;5(12):e15216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morris A, Beck J, Schloss P, Campbell T, Crothers K, Curtis J, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187(10):1067–75.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende D, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Icaza-Chávez M. Microbiota intestinal en la salud y la enfermedad. Rev Gastroenterol Mex. 2013;78(4):240–8.

    PubMed  Google Scholar 

  56. Price-Lloyd J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51.

    Article  Google Scholar 

  57. Wang F, Yu T, Huang G, Cai D, Liang X, Su H, et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol. 2015;25(8):1195–204.

    Article  CAS  PubMed  Google Scholar 

  58. Maruvada P, Leone V, Kaplan LM, Chang EB. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 2017;22(5):589–99.

    Article  CAS  PubMed  Google Scholar 

  59. Matsumoto K, Takada T, Shimizu K, Moriyama K, Kawakami K, Hirano K, et al. Effects of a probiotic fermented milk beverage containing lactobacillus casei strain Shirota on defecation frequency, intestinal microbiota, and the intestinal environment of health individuals with soft stools. J Biosci Bioeng. 2010;110(5):547–52.

    Article  CAS  PubMed  Google Scholar 

  60. Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front Microbiol. 2016;7:1227.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Aragón I, Herrera-Imbroda B, Queipo-Ortuño M, Castillo E, Del Moral J, Gómez-Millán J, et al. The urinary tract microbiome in health and disease. Eur Urol Focus. 2018;4(1):128–38.

    Article  PubMed  Google Scholar 

  62. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract-a role beyond infection. Nature. 2015;12(2):81–90.

    Google Scholar 

  63. Robinson D, Giarenis I, Cardozo L. You are what you eat: the impact of diet on overactive bladder and lower urinary tract symptoms. Maturitas. 2014;79(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  64. Marckmann P, Osther P, Pedersen AN, Jespersen B. High-protein diets and renal health. J Ren Nutr. 2015;25(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  65. Smith S, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595(2):451–63.

    Article  CAS  PubMed  Google Scholar 

  66. Petricevic L, Unger F, Viernstein H, Kiss H. Randomized, double-blind, placebo-controlled study of oral lactobacilli to improve the vaginal flora of postmenopausal women. Eur J Obstet Gynecol Reprod Biol. 2008;141(1):54–7.

    Article  PubMed  Google Scholar 

  67. Mändar R. Microbiota of male genital tract: impact on the health of man and his partner. Pharmacol Res. 2013;69(1):32–41.

    Article  PubMed  Google Scholar 

  68. Nelson D, Van Der Pol B, Dong Q, Revanna K, Fan B, Easwaran S, et al. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS One. 2010;5(11):e14116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Poutahidis T, Springer A, Levkovich T, Qi P, Varian B, Lakritz J, et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One. 2014;9(1):e84877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Moissl-Eichinger C, Probst A, Birarda G, Auerbach A, Koskinen K, et al. Human age and skin physiology shape diversity and abundance of archaea on skin. Sci Rep. 2017;7(1):4039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Maguire M, Maguire G. The role of microbiota, and probiotics and prebiotics in skin health. Arch Dermatol Res. 2017;309(6):411–21.

    Article  PubMed  Google Scholar 

  72. Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, Iioka E, et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci Rep. 2017;7(1):10567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Makki K, Deehan E, Walter J, Backhed F. The impact of dietary Fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705–15.

    Article  CAS  PubMed  Google Scholar 

  74. So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly J, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am J Clin Nutr. 2018;107(6):965–83.

    Article  PubMed  Google Scholar 

  75. Tavares Da Silva S, Araújo dos Santos C, Bressan J. Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics. Nutr Hosp. 2013;28(4):1039–48.

    CAS  Google Scholar 

  76. Holscher H. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Theou O, Jayanama K, Fernández-Garrido J, Buigues C, Pruiboom L, Hoogland AJ, et al. Can a prebiotic formulation reduce frailty levels in older people? J Frailty Aging. 2019;8(1):48–52.

    CAS  PubMed  Google Scholar 

  78. Murtaza N, Ó Cuív P, Morrison M. Diet and the microbiome. Gastroenterol Clin N Am. 2017;46(1):49–60.

    Article  Google Scholar 

  79. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan T, Cryan J. Feeding the microbiota-gut-brain Axis: diet, microbiome and neuropsychiatry. Transl Res. 2017;179:223–44.

    Article  CAS  PubMed  Google Scholar 

  80. Kolida S, Tuohy K, Gibson GR. Prebiotic effects of inulin and oligofructose. Br J Nutr. 2002;87(Suppl 2):S193–7.

    Article  CAS  PubMed  Google Scholar 

  81. Roberfroid M, Gibson G, Hoyles L, McCartney A, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(Suppl 2):S1–63.

    Article  CAS  PubMed  Google Scholar 

  82. Cani P, Bibiloni R, Knauf C, Waget A, Neyrinck A, Delzenne N, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.

    Article  CAS  PubMed  Google Scholar 

  83. Goodrich J, Davenport E, Clark A, Ley R. The relationship between the human genome and microbiome comes into view. Annu Rev Genet. 2017;51:413–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blekhman R, Goodrich J, Huang K, Sun Q, Bukowski R, Bell J, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bonder M, Kurilshikov A, Tigchelaar E, Mujagic Z, Imhann F, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48(11):1407–12.

    Article  CAS  PubMed  Google Scholar 

  86. Turpin W, Espin-Garcia O, Xu W, Silverberg M, Kevans D, et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016;48(11):1413–7.

    Article  CAS  PubMed  Google Scholar 

  87. Goodrich J, Davenport E, Beaumont M, Jackson M, Knight R, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Igartua C, Davenport E, Gilad Y, Nicolae D, Pinto J, Ober C. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome. Microbiome. 2017;5(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang J, Thingholm L, Skiecevičienė J, Rausch P, Kummen M, et al. Genome-wide association analysis identifies variation in vitamin d receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xie H, Guo R, Zhong H, Feng Q, Lan Z, et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 2016;3(6):572–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Special thanks to Pamela Tella-Vega for the awesome images for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Carrillo-Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chávez-Elizalde, B.P., Barrera-Vázquez, O.S., Carrillo-Vega, M.F. (2020). Microbiome Research and Aging. In: Gomez-Verjan, J., Rivero-Segura, N. (eds) Clinical Genetics and Genomics of Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-40955-5_9

Download citation

Publish with us

Policies and ethics