Skip to main content

CDAE: Towards Empowering Denoising in Side-Channel Analysis

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11999))

Included in the following conference series:

Abstract

Side-Channel Analysis (SCA) plays a crucial role in hardware security evaluation. However, side-channel acquisitions (a.k.a. traces) usually contain noises that often impose negative effects on key-recovery efficiency. In this paper, we propose convolutional denoising autoencoder (CDAE) for noise reduction in SCA. CDAE is composed of multiple layers of convolution operators, learning an end-to-end mapping from noisy traces to clean traces by minimizing the \(\ell _2\) loss of noisy-clean trace pairs. The convolutional layers capture the abstraction of the traces while eliminating noises. We argue that CDAE is very suitable for profiled SCA especially when the attacker has a large amount of traces in the offline profiling phase. Once the network training is done, our denoising network can be applied to individual new noisy traces for the attacker to launch online attacks. To validate the effectiveness of our method, we train CDAE to denoise traces and then perform Template Attacks (TA) in three high noise jamming scenarios, including unprotected (GPU and FPGA based) and protected (MCU based) AES implementations. Our method can significantly outperform the state-of-the-art Singular Spectrum Analysis (SSA) denoising method on both information theoretic metrics and security metrics. Results show that CDAE achieves at least \(\sim 4\times \) Signal-to-Noise Ratio (SNR) gain, thus TA with denoising preprocessing requires at most 50% of the traces in the attack phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Totally 256 classes for AES implementation in this paper because there are 256 elements in Galois field \(GF(2^8)\).

  2. 2.

    We stress that the information gain remains consistency in \(\mathcal {F}(\mathcal {X}_{\text {profiling}})\) and \(\mathcal {F}(\mathcal {X}_{\text {attack}})\) since early-stopping is used to prevent over-fitting.

References

  1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  3. Charvet, X., Pelletier, H.: Improving the DPA attack using wavelet transform. In: NIST Physical Security Testing Workshop, vol. 46 (2005)

    Google Scholar 

  4. Merino Del Pozo, S., Standaert, F.-X.: Blind source separation from single measurements using singular spectrum analysis. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 42–59. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_3

    Chapter  Google Scholar 

  5. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 459–476. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_26

    Chapter  Google Scholar 

  6. Gao, Y., Zhang, H., Cheng, W., Zhou, Y., Cao, Y.: Electro-magnetic analysis of GPU-based AES implementation. In: Proceedings of the 55th Annual Design Automation Conference, p. 121. ACM (2018). https://doi.org/10.1145/3195970.3196042

  7. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  8. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  9. Le, T.H., Clédière, J., Servière, C., Lacoume, J.L.: Noise reduction in side channel attack using fourth-order cumulant. IEEE Trans. Inf. Forensics Secur. 2(4), 710–720 (2007). https://doi.org/10.1109/TIFS.2007.910252

    Article  Google Scholar 

  10. Lu, X., Tsao, Y., Matsuda, S., Hori, C.: Speech enhancement based on deep denoising autoencoder. In: Interspeech, pp. 436–440 (2013)

    Google Scholar 

  11. Maghrebi, H., Prouff, E.: On the use of independent component analysis to denoise side-channel measurements. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 61–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89641-0_4

    Chapter  MATH  Google Scholar 

  12. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2802–2810 (2016)

    Google Scholar 

  13. Meynard, O., Réal, D., Flament, F., Guilley, S., Homma, N., Danger, J.L.: Enhancement of simple electro-magnetic attacks by pre-characterization in frequency domain and demodulation techniques. In: 2011 Design, Automation & Test in Europe, pp. 1–6. IEEE (2011)

    Google Scholar 

  14. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  15. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations (2018). https://doi.org/10.13154/tches.v2019.i1.209-237

  16. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ascad database. IACR Cryptology ePrint Archive 2018, 53 (2018)

    Google Scholar 

  17. Souissi, Y., Elaabid, M.A., Debande, N., Guilley, S., Danger, J.L.: Novel applications of wavelet transforms based side-channel analysis. In: Non-Invasive Attack Testing Workshop (2011)

    Google Scholar 

  18. Souissi, Y., Guilley, S., Danger, J.l., Mekki, S., Duc, G.: Improvement of power analysis attacks using Kalman filter. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1778–1781. IEEE (2010). https://doi.org/10.1109/ICASSP.2010.5495428

  19. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  20. TELECOM ParisTech SEN research group: DPA Contest, 2nd edn., 2009–2010. http://www.DPAcontest.org/v2/

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (No. 61632020) and Beijing Natural Science Foundation (No. 4192067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Zhou .

Editor information

Editors and Affiliations

Appendix A. Kernel Density Estimation of Univariate Distribution at PoI

Appendix A. Kernel Density Estimation of Univariate Distribution at PoI

Fig. 6.
figure 6

Power distribution of sensitive variable v at PoI 276 (256 classes). (Color figure online)

Fig. 7.
figure 7

Power distributions of sensitive variable v at PoI 330 (256 classes). (Color figure online)

Fig. 8.
figure 8

Power distributions of masked Sbox output v at PoI 517 and mask m at PoI 156. (Color figure online)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, G., Li, H., Ming, J., Zhou, Y. (2020). CDAE: Towards Empowering Denoising in Side-Channel Analysis. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds) Information and Communications Security. ICICS 2019. Lecture Notes in Computer Science(), vol 11999. Springer, Cham. https://doi.org/10.1007/978-3-030-41579-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41579-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41578-5

  • Online ISBN: 978-3-030-41579-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics