Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 94))

Abstract

Sickle cell hemoglobin (HbS) is an example of a genetic variant of human hemoglobin where a point mutation in the β globin gene results in substitution of glutamic acid to valine at sixth position of the β globin chain. Association between tetrameric hemoglobin molecules through noncovalent interactions between side chain residue of βVal6 and hydrophobic grooves formed by βAla70, βPhe85 and βLeu88 amino acid residues of another tetramer followed by the precipitation of the elongated polymer leads to the formation of sickle-shaped RBCs in the deoxygenated state of HbS. There are multiple non-covalent interactions between residues across intra- and inter-strands that stabilize the polymer. The clinical phenotype of sickling of RBCs manifests as sickle cell anemia, which was first documented in the year 1910 in an African patient. Although the molecular reason of the disease has been understood well over the decades of research and several treatment procedures have been explored to date, an effective therapeutic strategy for sickle cell anemia has not been discovered yet. Surprisingly, it has been observed that the oxy form of HbS and glutathionylated form of deoxy HbS inhibits polymerization. In addition to describe the residue level interactions in the HbS polymer that provides its stability, here we explain the mechanism of inhibition in the polymerization of HbS in its oxy state. Additionally, we reported the molecular insights of inhibition in the polymerization for glutathionyl HbS, a posttranslational modification of hemoglobin, even in its deoxy state. In this chapter we briefly consider the available treatment procedures of sickle cell anemia and propose that the elevation of glutathionylation of HbS within RBCs, without inducing oxidative stress, might be an effective therapeutic strategy for sickle cell anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, A.K., Mitra, A., Das, R. (2020). Sickle Cell Hemoglobin. In: Hoeger, U., Harris, J. (eds) Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Subcellular Biochemistry, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-030-41769-7_12

Download citation

Publish with us

Policies and ethics