Skip to main content

Sentence Writing Test for Parkinson Disease Modeling: Comparing Predictive Ability of Classifiers

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12033))

Included in the following conference series:

Abstract

The present paper is devoted to the modeling of the sentence writing test to support diagnostics of Parkinson’s disease. Combination of the digitalized fine motor tests and machine learning based analysis frequently lead the results of very high accuracy. Nevertheless, in many cases, such results do not allow proper interpretation and are not fully understood by a human practitioner. One of the distinctive properties of the proposed approach is that the set of features consists of parameters that may be easily interpreted. Features that represent size, kinematics, duration and fluency of writing are calculated for each individual letter. Furthermore, proposed approach is language agnostic and may be used for any language based either on Latin or Cyrillic alphabets. Finally, the feature set describing the test results contains the parameters showing the amount and smoothness of the fine motions which in turn allows to precisely pin down rigidity and unpurposeful motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Data Mining. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8

    Book  MATH  Google Scholar 

  2. Al-Dmour, A., Fraij, F.: Segmenting arabic handwritten documents into text lines and words. Int. J. Adv. Comput. Technol. 6(3), 109–119 (2004)

    Google Scholar 

  3. Drotar, P., Mekyska, J., Rektorova, I., Masarova, L., Smékal, Z., Faundez-Zanuy, M.: Evaluation of handwriting kinematics and pressure for differential diagnosis of parkinson’s disease. Artif. Intell. Med. 67, 39–46 (2016). https://doi.org/10.1016/j.artmed.2016.01.004

    Article  Google Scholar 

  4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  5. Letanneux, A., Danna, J., Velay, J.L., Viallet, F., Pinto, S.: From micrographia to Parkinson’s disease dysgraphia. Mov. Disord. 29(12), 1467–1475 (2014). https://doi.org/10.1002/mds.25990

    Article  Google Scholar 

  6. Moustafa, A.A., Chakravarthy, S., Phillips, J.R., Gupta, A., Keri, S., Polner, B., Frank, M.J., Jahanshahi, M.: Motor symptoms in parkinson’s disease: a unified framework. Neurosci. Biobehav. Rev. 68, 727–740 (2016). https://doi.org/10.1016/j.neubiorev.2016.07.010

    Article  Google Scholar 

  7. Nõmm, S., Bardõš, K., Toomela, A., Medijainen, K., Taba, P.: Detailed analysis of the luria’s alternating seriestests for parkinson’s disease diagnostics. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1347–1352, December 2018. https://doi.org/10.1109/ICMLA.2018.00219

  8. Nõmm, S., Toomela, A., Kozhenkina, J., Toomsoo, T.: Quantitative analysis in the digital luria’s alternating series tests. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1–6, November 2016. https://doi.org/10.1109/ICARCV.2016.7838746

  9. Nackaerts, E., et al.: Validity and reliability of a new tool to evaluate handwriting difficulties in Parkinson’s disease. Plos One 12(3), 1–14 (2017). https://doi.org/10.1371/journal.pone.0173157

    Article  Google Scholar 

  10. Nõmm, S., Toomela, A.: An alternative approach to measure quantity and smoothness of the human limb motions. Est. J. Eng. 19(4), 298–308 (2013)

    Article  Google Scholar 

  11. Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., Schlesinger, I.: Handwriting as an objective tool for parkinson’s disease diagnosis. J. Neurol. 260, 2357–2361 (2013). https://doi.org/10.1007/s00415-013-6996-x

    Article  Google Scholar 

  12. Seni, G., Cohen, E.: External word segmentation of off-line handwritten text lines. Pattern Recogn. 27(1), 41–52 (1994). https://doi.org/10.1016/0031-3203(94)90016-7

    Article  Google Scholar 

  13. Smits, E., et al.: Standardized handwriting to assess bradykinesia, micrographia and tremor in parkinson’s disease. PLoS ONE 9 (2014). https://doi.org/10.1371/journal.pone.0097614

  14. Stepień, P., Kawa, J., Wieczorek, D., Dabrowska, M., Sławek, J., Sitek, E.J.: Computer aided feature extraction in the paper version of luria’s alternating series test in progressive supranuclear palsy. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2018. AISC, vol. 762, pp. 561–570. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91211-0_49

    Chapter  Google Scholar 

  15. Tan, J., Lai, J.H., Wang, C.D., Wang, W.X., Zuo, X.X.: A new handwritten character segmentation method based on nonlinear clustering. Neurocomputing 89, 213–219 (2012). https://doi.org/10.1016/j.neucom.2012.02.026

    Article  Google Scholar 

  16. Thomas, M., Lenka, A., Kumar Pal, P.: Handwriting analysis in Parkinson’s disease: current status and future directions. Mov. Disord. Clin. Pract. 4(6), 806–818 (2017). https://doi.org/10.1002/mdc3.12552

    Article  Google Scholar 

  17. Van Gemmert, A., Hans-Leo, T., George, S.: Parkinsonian patients reduce their stroke size with increased processing demands. Brain Cogn. 47(3), 504–512 (2001). https://doi.org/10.1006/brcg.2001.1328

    Article  Google Scholar 

  18. Lange, K.W., et al.: Brain dopamine and kinematics of graphomotor functions. Human Mov. Sci. 25, 492–509 (2006). https://doi.org/10.1016/j.humov.2006.05.006

    Article  Google Scholar 

  19. Shukla, A.W., Ounpraseuth, S., Okun, M., Gray, V., Schwankhaus, J.: Micrographia and related deficits in parkinson’s disease: a cross-sectional study. BMJ Open 2(3), e000628 (2012). https://doi.org/10.1136/bmjopen-2011-000628

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Nõmm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Netšunajev, A., Nõmm, S., Toomela, A., Medijainen, K., Taba, P. (2020). Sentence Writing Test for Parkinson Disease Modeling: Comparing Predictive Ability of Classifiers. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12033. Springer, Cham. https://doi.org/10.1007/978-3-030-41964-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41964-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41963-9

  • Online ISBN: 978-3-030-41964-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics