Skip to main content

Abstract

This chapter covers control system design for the robot. The control system of the pipe inspection robot is based on several concepts, related to control of mobile robots and arm-type robots. Structure of the control system is discussed in the aspect of communication, power supply, user interface and connections between different elements. Finally, software implementation is discussed on the level of on-board controller and high-level PC computer application with user graphical interface. Execution of the pedipulators trajectories is provided by the designed control system to transform the robot to different work environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egerstedt M. Control of autonomous mobile robots. In: Handbook of networked and embedded control systems; 2005. p. 767–778.

    Chapter  Google Scholar 

  2. Cook G. Mobile robots navigation, control and remote sensing. New Jersey: Wiley; 2011. (Chapter 6. Control system design and implementation 95)

    Book  Google Scholar 

  3. Rol S, Nourbakhsh IR. Introduction to autonomous mobile robots. Cambridge, USA: MIT Press; 2011.

    Google Scholar 

  4. Klancar G, Matko D, Blazic S. Mobile robot control on a reference path. In: 13th mediterranean conference on control and automation; 2005, p. 1343–1348. (Chapter 6. Control system design and implementation 96).

    Google Scholar 

  5. Kozlowski K, Pazderski D. Modeling and control of a 4-wheel skid-steering mobile robot. Int J Appl Math Comput Sci. 2004;14(4):477–96.

    MathSciNet  MATH  Google Scholar 

  6. Corke P. Robotics, Vision and control: fundamental algorithms in MATLAB, vol. 3. Springer Science & Business Media; 2011.

    Google Scholar 

  7. Buratowski T. Mobile robots-selected issues. 1st ed. Krakow: AGH University of Science and Technology Press; 2013.

    Google Scholar 

  8. Ciszewski M, Buratowski T, Uhl T, Giergiel M, Seweryn K, Teper W, Zwierzynski AJ. Ultralight mobile drilling system-design and analyses of a robotic platform intended for terrestrial and space applications. In: Robot motion and control (RoMoCo). 2015. p. 84–90.

    Google Scholar 

  9. Francis SLX, Anavatti SG, Garratt M. Dynamic model of autonomous ground vehicle for the path planning module. In: ICARA 2011—Proceedings of the 5th international conference on automation, robotics and applications; 2011. p. 73–77.

    Google Scholar 

  10. Siciliano B, Khatib O. Springer Handbook of Robotics, 1st ed. Berlin: Springer; 2008.

    Chapter  Google Scholar 

  11. Palmieri L, Koenig S, Arras KO. RRT-based nonholonomic motion planning using any-angle path biasing. In: Proceedings of IEEE international conference on robotics and automation 2016-June; 2016. p. 2775–2781.

    Google Scholar 

  12. Buratowski T, Dabrowski B, Uhl T, Banaszkiewicz M. The precise odometry navigation for the group of robots. Schedae Inform. 2010;19:99–111.

    Article  Google Scholar 

  13. Corke P. Robotics Toolbox. 2016. http://petercorke.com/Robotics_Toolbox.html. Accessed 10 Feb 2016.

  14. Buratowski T, Ciszewski M, Giergiel M, Kudriashov A, Mitka Ł. Robot z laserowym czujnikiem odległości do budowy map 2D. Program 55. sympozjonu “Modelowanie w Mechanice”, 2016.

    Google Scholar 

  15. Ciszewski M, Buratowski T, Giergiel M, Kudriashov A, Seweryn K, Teper W, Zwierzynski A, Uhl T. Inspection robot scaner system based on a LiDAR mapping solution in study of problems in modern science: new technologies in engineering, advanced management, efciency of social institutions. Khmelnytsky National University; 2015.

    Google Scholar 

  16. Hansen P, Alismail H, Rer P, Browning B. Visual mapping for natural gas pipe inspection. Int J Robot Res. 2015;34(4–5):532–58.

    Article  Google Scholar 

  17. Hu Y, Song Z, Zhu J. Estimating the posture of pipeline inspection robot with a 2D Laser Range Finder. In: 2012 IEEE international conference on multisensor fusion and integration for intelligent systems (MFI); 2012. p. 401–406.

    Google Scholar 

  18. Lee J-S, Roh S, Kim DW, Moon H, Choi HR. In-pipe robot navigation based on the landmark recognition system using shadow images. In: 2009 IEEE international conference on robotics and automation; 2009. p. 1857-1862.

    Google Scholar 

  19. Yatim NM, Shauri RLA, Buniyamin N. Automated mapping for underground pipelines: An overview. In: 2nd international conference on electrical, electronics and system engineering (ICEESE); 2014. p. 77–82.

    Google Scholar 

  20. RedZone. Solo Unmanned inspection robot. http://www.redzone.com/products/solo-robots/. Accessed 21 Oct 2012.

  21. Wu D, Ogai H, Yeh Y, Hirai K, Abe T, Sato G. Pipe inspection robot using a wireless communication system. Artif Life Robot. 2009;14(2):154–9.

    Article  Google Scholar 

  22. Nagaya K, Yoshino T, Katayama M, Murakami I, Ando Y. Wireless piping inspection vehicle using magnetic adsorption force. IEEE/ASME Trans Mechatron. 2012;17(3):472–9.

    Article  Google Scholar 

  23. Wacławski M. Control of arms of a mobile inspection robot. MA thesis, AGH University of Science and Technology; 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Małka .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciszewski, M., Giergiel, M., Buratowski, T., Małka, P. (2020). Control System Design and Implementation. In: Modeling and Control of a Tracked Mobile Robot for Pipeline Inspection. Mechanisms and Machine Science, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-030-42715-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42715-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42714-6

  • Online ISBN: 978-3-030-42715-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics