Skip to main content

Persistent Intersection Homology for the Analysis of Discrete Data

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization V (TopoInVis 2017)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Included in the following conference series:

  • 620 Accesses

Abstract

Topological data analysis is becoming increasingly relevant to support the analysis of unstructured data sets. A common assumption in data analysis is that the data set is a sample—not necessarily a uniform one—of some high-dimensional manifold. In such cases, persistent homology can be successfully employed to extract features, remove noise, and compare data sets. The underlying problems in some application domains, however, turn out to represent multiple manifolds with different dimensions. Algebraic topology typically analyzes such problems using intersection homology, an extension of homology that is capable of handling configurations with singularities. In this paper, we describe how the persistent variant of intersection homology can be used to assist data analysis in visualization. We point out potential pitfalls in approximating data sets with singularities and give strategies for resolving them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remark that topologically, this case can often be reduced to the computation of ordinary homology, because a theorem of Goresky and MacPherson [14] ensures that for pseudomanifolds, the intersection homology groups remain the same under normalization, and if they are nonsingular, the intersection homology groups are ordinary homology groups. As it is not clear how to obtain normalizations for real-world data, the calculation of persistent intersection homology is necessary.

  2. 2.

    See the unpublished notes by MacPherson on Intersection Homology and Perverse Sheaves, available under http://faculty.tcu.edu/gfriedman/notes/ih.pdf, for the origin of this name.

  3. 3.

    https://github.com/Submanifold/Aleph.

References

  1. Bendich, P.: Analyzing stratified spaces using persistent versions of intersection and local homology. Ph.D. thesis, Duke University (2009)

    Google Scholar 

  2. Bendich, P., Harer, J.: Persistent intersection homology. FoCM 11(3), 305–336 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Bendich, P., Wang, B., Mukherjee, S.: Local homology transfer and stratification learning. In: Rabani, Y. (ed.) Symposium on Discrete Algorithms, pp. 1355–1370. SIAM, Philadelphia (2012)

    Google Scholar 

  4. Carlsson, G.: Topological pattern recognition for point cloud data. Acta Numer. 23, 289–368 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE TPAMI 17(8), 790–799 (1995)

    Article  Google Scholar 

  6. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. FoCM 9(1), 79–103 (2009)

    MATH  Google Scholar 

  8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  Google Scholar 

  9. de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Inverse Probl. 27(12), 124003 (2011)

    Article  MathSciNet  Google Scholar 

  10. Donoho, D.L., Grimes, C.: Image manifolds which are isometric to Euclidean space. J. Math. Imaging Vision 23(1), 5–24 (2005)

    Article  MathSciNet  Google Scholar 

  11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence (2010)

    Google Scholar 

  12. Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. In: European Congress of Mathematics. EMS Publishing House, Zürich (2014)

    Google Scholar 

  13. Fefferman, C., Mitter, S., Narayanan, H.: Testing the manifold hypothesis. J. Am. Math. Soc. 29(4), 983–1049 (2016)

    Article  MathSciNet  Google Scholar 

  14. Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)

    Article  MathSciNet  Google Scholar 

  15. Hinton, G.E., Dayan, P., Revow, M.: Modeling the manifolds of images of handwritten digits. IEEE Trans. Neural Netw. 8(1), 65–74 (1997)

    Article  Google Scholar 

  16. Kirwan, F., Woolf, J.: An Introduction to Intersection Homology Theory, 2nd edn. Chapman and Hall/CRC, Boca Raton (2006)

    Book  Google Scholar 

  17. MacPherson, R., Vilonen, K.: Elementary construction of perverse sheaves. Invent. Math. 84(2), 403–435 (1986)

    Article  MathSciNet  Google Scholar 

  18. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Narayanan, H., Mitter, S.: Sample complexity of testing the manifold hypothesis. In: NIPS 23, pp. 1786–1794. Curran Associates, Inc., Red Hook, NY (2010)

    Google Scholar 

  20. Pratt, V.: Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH Comput. Graph. 21(4), 145–152 (1987)

    Article  MathSciNet  Google Scholar 

  21. Rieck, B., Leitte, H.: Persistent homology for the evaluation of dimensionality reduction schemes. Comput. Graph. Forum 34(3), 431–440 (2015)

    Article  Google Scholar 

  22. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  23. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Singh, G., Mémoli, F., Carlsson, G.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: Eurographics Symposium on Point-Based Graphics. Eurographics Association, Prague (2007)

    Google Scholar 

  25. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Rieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rieck, B., Banagl, M., Sadlo, F., Leitte, H. (2020). Persistent Intersection Homology for the Analysis of Discrete Data. In: Carr, H., Fujishiro, I., Sadlo, F., Takahashi, S. (eds) Topological Methods in Data Analysis and Visualization V. TopoInVis 2017. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-43036-8_3

Download citation

Publish with us

Policies and ethics