Skip to main content

Transcranial Magnetic Stimulation in Dementia: From Pathophysiology to Treatment

  • Chapter
  • First Online:
Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences
  • 796 Accesses

Abstract

Alzheimer’s disease (AD) is one of the most devastating forms of dementia. At present, there are no treatments of value and therefore patients with AD have an uncertain future, due to the current incapability to envisage the course of the disease. This is mainly due to the lack of understanding of the underlying pathophysiology and to the huge patients’ clinical heterogeneity. In this regard, recent evidence reinforced the notion that synaptic dysfunction could be a relevant aspect of AD-related pathophysiology. In particular, it has been shown that loss of synaptic density occurs since the early phases of the disease, and that synaptic failure is an early event that precedes neuronal degeneration. Such remarkable weakening of synaptic transmission is supposed to play a key role in the pathogenesis of different forms of dementia, including AD, frontotemporal dementia, and Lewy body dementia. However, despite this emerging background, it has not been possible to quantify synaptic functioning (or dysfunction) directly in vivo in AD patients. Transcranial magnetic stimulation (TMS) has been recently introduced as a novel approach able to identify the early signatures of synaptic dysfunction characterizing the different forms of AD. In the current chapter, I review the novel emerging neurophysiological signatures of AD that have been highlighted in vivo by TMS studies. I show how TMS measurement of neurophysiological activity may provide novel biomarkers useful to increase the accuracy of differential diagnosis, to predict disease progression, and to anticipate response to therapy. Recently, different forms of noninvasive brain stimulation techniques (e.g., repetitive TMS, rTMS) have been applied to patients with AD in order to improve cognitive decline and behavioral disorders. In recent years, treatments based on multiple sessions of rTMS have represented a promising tool for influencing cognition in people with neurodegenerative diseases. In the second part of this chapter, I also consider novel therapeutic approaches based on the clinical use of rTMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, Burns A, Dening T, Findlay D, Holmes C, Hughes A. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.

    CAS  PubMed  Google Scholar 

  2. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K, Broich K. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12(3):292–323.

    PubMed  PubMed Central  Google Scholar 

  3. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wallin ÅK, Blennow K, Zetterberg H, Londos E, Minthon L, Hansson O. CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology. 2010;74(19):1531–7.

    CAS  PubMed  Google Scholar 

  5. Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, Lee JH, Ryu YH, Lee MS, Lyoo CH. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol. 2016;80(2):247–58.

    CAS  PubMed  Google Scholar 

  6. Yin Y, Gao D, Wang Y, Wang ZH, Wang X, Ye J, Wu D, Fang L, Pi G, Yang Y, Wang XC. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci. 2016;113(26):E3773–81.

    CAS  PubMed  Google Scholar 

  7. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology. 2007;68(18):1501–8.

    CAS  PubMed  Google Scholar 

  8. Selkoe DJ. The therapeutics of Alzheimer’s disease: where we stand and where we are heading. Ann Neurol. 2013;74(3):328–36.

    CAS  PubMed  Google Scholar 

  9. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91.

    CAS  PubMed  Google Scholar 

  10. Lasagna-Reeves CA, de Haro M, Hao S, Park J, Rousseaux MW, Al-Ramahi I, Jafar-Nejad P, Vilanova-Velez L, See L, De Maio A, Nitschke L. Reduction of Nuak1 decreases tau and reverses phenotypes in a tauopathy mouse model. Neuron. 2016;92(2):407–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mosconi L, Pupi A, De Leon MJ. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci. 2008;1147:180.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brickman AM, Small SA, Fleisher A. Pinpointing synaptic loss caused by Alzheimer’s disease with fMRI. Behav Neurol. 2009;21(1–2):93–100.

    PubMed  PubMed Central  Google Scholar 

  13. Cook IA, Leuchter AF. Synaptic dysfunction in Alzheimer’s disease: clinical assessment using quantitative EEG. Behav Brain Res. 1996;78(1):15–23.

    CAS  PubMed  Google Scholar 

  14. Fitzgerald PB, Daskalakis ZJ. Repetitive transcranial magnetic stimulation treatment for depressive disorders: a practical guide. Berlin: Springer Science & Business Media; 2013.

    Google Scholar 

  15. Cantone M, Di Pino G, Capone F, Piombo M, Chiarello D, Cheeran B, Pennisi G, Di Lazzaro V. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol. 2014;125(8):1509–32.

    PubMed  Google Scholar 

  16. Koch G, Di Lorenzo F, Del Olmo MF, Bonni S, Ponzo V, Caltagirone C, Bozzali M, Martorana A. Reversal of LTP-like cortical plasticity in Alzheimer’s disease patients with tau-related faster clinical progression. J Alzheimers Dis. 2016;50(2):605–16.

    CAS  PubMed  Google Scholar 

  17. Di Lorenzo F, Ponzo V, Bonnì S, Motta C, Negrão Serra PC, Bozzali M, Caltagirone C, Martorana A, Koch G. Long-term potentiation–like cortical plasticity is disrupted in Alzheimer’s disease patients independently from age of onset. Ann Neurol. 2016;80(2):202–10.

    PubMed  Google Scholar 

  18. Ziemann U. 1. Neuromodulation of motor learning in health and after stroke. Clin Neurophysiol. 2012;3(123):e9.

    Google Scholar 

  19. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    CAS  PubMed  Google Scholar 

  20. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29(24):7679–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fox MD, Halko MA, Eldaief MC, Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage. 2012;62(4):2232–43.

    PubMed  PubMed Central  Google Scholar 

  22. Di Lazzaro V, Rothwell JC. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex. J Physiol. 2014;592(19):4115–28.

    PubMed  PubMed Central  Google Scholar 

  23. Benussi A, Di Lorenzo F, Dell’Era V, Cosseddu M, Alberici A, Caratozzolo S, Cotelli MS, Micheli A, Rozzini L, Depari A, Flammini A, Ponzo V, Martorana A, Caltagirone C, Padovani A, Koch G, Borroni B. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology. 2017;89(7):665–72.

    PubMed  Google Scholar 

  24. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471(1):501–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2004;75(4):555–9.

    PubMed  Google Scholar 

  26. Grundey J, Freznosa S, Klinker F, Lang N, Paulus W, Nitsche MA. Cortical excitability in smoking and not smoking individuals with and without nicotine. Psychopharmacology. 2013;229(4):653–64.

    CAS  PubMed  Google Scholar 

  27. Koch G, Di Lorenzo F, Bonnì S, Ponzo V, Caltagirone C, Martorana A. Impaired LTP-but not LTD-like cortical plasticity in Alzheimer’s disease patients. J Alzheimers Dis. 2012;31(3):593–9.

    CAS  PubMed  Google Scholar 

  28. Huang YZ, Chen RS, Rothwell JC, Wen HY. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118(5):1028–32.

    CAS  PubMed  Google Scholar 

  29. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–99.

    CAS  PubMed  Google Scholar 

  30. Miniussi C, Thut G. Combining TMS and EEG offers new prospects in cognitive neuroscience. Brain Topogr. 2010;22(4):249.

    PubMed  Google Scholar 

  31. Benussi A, Alberici A, Ferrari C, Cantoni V, Dell’Era V, Turrone R, Cotelli MS, Binetti G, Paghera B, Koch G, Padovani A. The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease. Alzheimers Res Ther. 2018;10(1):94.

    PubMed  PubMed Central  Google Scholar 

  32. Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, Lemere CA, Cullen WK, Peng Y, Wisniewski T, Selkoe DJ. Amyloid β protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci. 2008;28(16):4231–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Palop JJ, Mucke L. Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci. 2010;13(7):812.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009;62(6):788–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Battaglia F, Wang HY, Ghilardi MF, Gashi E, Quartarone A, Friedman E, Nixon RA. Cortical plasticity in Alzheimer’s disease in humans and rodents. Biol Psychiatry. 2007;62(12):1405–12.

    CAS  PubMed  Google Scholar 

  36. Di Lorenzo F, Motta C, Bonnì S, Mercuri NB, Caltagirone C, Martorana A, Koch G. LTP-like cortical plasticity is associated with verbal memory impairment in Alzheimer’s disease patients. Brain Stimul. 2019;12(1):148–51.

    PubMed  Google Scholar 

  37. Motta C, Di Lorenzo F, Ponzo V, Pellicciari MC, Bonnì S, Picazio S, Mercuri NB, Caltagirone C, Martorana A, Koch G. Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2018;89(12):1237–42.

    PubMed  Google Scholar 

  38. Koch G, Di Lorenzo F, Loizzo S, Motta C, Travaglione S, Baiula M, Rimondini R, Ponzo V, Bonnì S, Toniolo S. Sallustio F. CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease. Sci Rep. 2017;7(1):13728.

    PubMed  PubMed Central  Google Scholar 

  39. Ferreri F, Vecchio F, Vollero L, Guerra A, Petrichella S, Ponzo D, Määtta S, Mervaala E, Könönen M, Ursini F, Pasqualetti P. Sensorimotor cortex excitability and connectivity in Alzheimer’s disease: a TMS-EEG co-registration study. Hum Brain Mapp. 2016;37(6):2083–96.

    PubMed  PubMed Central  Google Scholar 

  40. Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, Ponzo V, Picazio S, Di Lorenzo F, Serra L, Motta C. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. NeuroImage. 2018;169:302–11.

    PubMed  Google Scholar 

  41. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):2150–206.

    Google Scholar 

  42. Rutherford G, Lithgow B, Moussavi Z. Short and long-term effects of rTMS treatment on Alzheimer’s disease at different stages: a pilot study. J Exp Neurosci. 2015;9:JEN-S24004.

    Google Scholar 

  43. Cotelli M, Manenti R, Cappa SF, Geroldi C, Zanetti O, Rossini PM, Miniussi C. Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol. 2006;63(11):1602–4.

    PubMed  Google Scholar 

  44. Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia SE, Cogiamanian F, Barbieri S, Scarpini E, Priori A. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008;71(7):493–8.

    CAS  PubMed  Google Scholar 

  45. Turriziani P. Enhancing memory performance with rTMS in healthy subjects and individuals with mild cognitive impairment: the role of the right dorsolateral prefrontal cortex. Front Hum Neurosci. 2012;6:62.

    PubMed  PubMed Central  Google Scholar 

  46. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    PubMed  Google Scholar 

  47. Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study. J Neural Transm. 2013;120(5):813–9.

    PubMed  Google Scholar 

  48. Gili T, Cercignani M, Serra L, Perri R, Giove F, Maraviglia B, Caltagirone C, Bozzali M. Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. J Neurol Neurosurg Psychiatry. 2011;82(1):58–66.

    CAS  PubMed  Google Scholar 

  49. Lundstrom BN, Ingvar M, Petersson KM. The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. NeuroImage. 2005;27(4):824–34.

    PubMed  Google Scholar 

  50. Bonnì S, Veniero D, Mastropasqua C, Ponzo V, Caltagirone C, Bozzali M, Koch G. TMS evidence for a selective role of the precuneus in source memory retrieval. Behav Brain Res. 2015;282:70–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koch, G. (2020). Transcranial Magnetic Stimulation in Dementia: From Pathophysiology to Treatment. In: Dell'Osso, B., Di Lorenzo, G. (eds) Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43356-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43356-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43355-0

  • Online ISBN: 978-3-030-43356-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics