Skip to main content

Path Planning for Ellipsoidal Robots and General Obstacles via Closed-Form Characterization of Minkowski Operations

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIII (WAFR 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Included in the following conference series:

Abstract

Path planning has long been one of the major research areas in robotics, with PRM and RRT being two of the most effective path planners. Though they are generally very efficient, these two sample-based planners can become computationally expensive in the important special case of narrow passage problems. This paper develops a path planning paradigm which uses ellipsoids and superquadrics to respectively encapsulate the rigid parts of the robot and obstacles. The main benefit in doing this is that configuration-space obstacles can be parameterized in closed form, thereby allowing prior knowledge to be used to avoid sampling infeasible configurations, in order to solve the narrow passage problem efficiently. Benchmark results for single-body robots show that, remarkably, the proposed method outperforms the sample-based planners in terms of the computational time in searching for a path through narrow corridors. Feasible extensions that integrate with sample-based planners to further solve the high dimensional multi-body problems are discussed, which will require substantial additional theoretical development in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here the word “arena” denotes the bounded area in which the robot and obstacles are contained.

  2. 2.

    Explicitly, \(\varvec{\omega }= \log ^\vee (R)\), \(R \in \text {SO}(n)\) and \(\mathbf{t} \in \mathbb {R}^n\) (\(\mathbf{t}\) is the actual translation as seen in the world reference frame). And the pair \((R,\mathbf{t})\) forms the “Pose Change Group”, i.e. \(\text {PCG}(n) \doteq \text {SO}(n) \times \mathbb {R}^n\), with the group operation being a direct product, which is different than \(\text {SE}(n) \doteq \text {SO}(n) \rtimes \mathbb {R}^n\) (for more details, see [33]).

References

  1. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  2. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning (1998)

    Google Scholar 

  3. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2, pp. 995–1001. IEEE (2000)

    Google Scholar 

  4. Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 1, pp. 521–528. IEEE (2000)

    Google Scholar 

  5. Varadhan, G., Manocha, D.: Star-shaped roadmaps - a deterministic sampling approach for complete motion planning. In: Robotics: Science and Systems, vol. 173. Citeseer (2005)

    Google Scholar 

  6. Rodriguez, S., Tang, X., Lien, J.M., Amato, N.M.: An obstacle-based rapidly-exploring random tree. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 895–900. IEEE (2006)

    Google Scholar 

  7. Hsu, D., Jiang, T., Reif, J., Sun, Z.: The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 3, pp. 4420–4426. IEEE (2003)

    Google Scholar 

  8. Shi, K., Denny, J., Amato, N.M.: Spark PRM: using RRTs within PRMs to efficiently explore narrow passages. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4659–4666. IEEE (2014)

    Google Scholar 

  9. Yan, Y., Ma, Q., Chirikjian, G.S.: Path planning based on closed-form characterization of collision-free configuration-spaces for ellipsoidal bodies obstacles and environments. In: Proceedings of the 1st International Workshop on Robot Learning and Planning, pp. 13–19 (2016)

    Google Scholar 

  10. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graphics Appl. 1(1), 11–23 (1981)

    Article  MathSciNet  Google Scholar 

  11. Jaklic, A., Leonardis, A., Solina, F.: Segmentation and Recovery of Superquadrics, vol. 20. Springer, Dordrecht (2013)

    MATH  Google Scholar 

  12. Agba, E.I., Wong, T.L., Huang, M.Z., Clark, A.M.: Objects interaction using superquadrics for telemanipulation system simulation. J. Robot. Syst. 10(1), 1–22 (1993)

    Article  Google Scholar 

  13. Guibas, L., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: 24th Annual Symposium on Foundations of Computer Science, pp. 100–111. IEEE (1983)

    Google Scholar 

  14. Latombe, J.C.: Robot Motion Planning, vol. 124. Springer, Boston (2012)

    Google Scholar 

  15. Kavraki, L.E.: Computation of configuration-space obstacles using the fast Fourier transform. IEEE Trans. Robot. Autom. 11(3), 408–413 (1995)

    Article  MathSciNet  Google Scholar 

  16. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. 21(1), 39–61 (2002)

    Article  MathSciNet  Google Scholar 

  17. Nelaturi, S., Shapiro, V.: Configuration products and quotients in geometric modeling. Comput. Aided Des. 43(7), 781–794 (2011)

    Article  Google Scholar 

  18. Lien, J.M.: Hybrid motion planning using Minkowski sums. In: Proceedings of Robotics: Science and Systems IV (2008)

    Google Scholar 

  19. Nelaturi, S., Shapiro, V.: Solving inverse configuration space problems by adaptive sampling. Comput. Aided Des. 45(2), 373–382 (2013)

    Article  MathSciNet  Google Scholar 

  20. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. Comput. Aided Des. 39(11), 929–940 (2007)

    Article  Google Scholar 

  21. Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra into convex pieces. Algorithmica 55(2), 329–345 (2009)

    Article  MathSciNet  Google Scholar 

  22. Behar, E., Lien, J.M.: Dynamic Minkowski sum of convex shapes. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3463–3468. IEEE (2011)

    Google Scholar 

  23. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal Toolbox (ET). In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 1498–1503 (2006). https://doi.org/10.1109/CDC.2006.377036

  24. Hartquist, E.E., Menon, J., Suresh, K., Voelcker, H.B., Zagajac, J.: A computing strategy for applications involving offsets, sweeps, and Minkowski operations. Comput. Aided Des. 31(3), 175–183 (1999)

    Article  Google Scholar 

  25. Yan, Y., Chirikjian, G.S.: Closed-form characterization of the Minkowski sum and difference of two ellipsoids. Geom. Dedicata 177(1), 103–128 (2015)

    Article  MathSciNet  Google Scholar 

  26. Chirikjian, G.S., Yan, Y.: The kinematics of containment. In: Lenarčič, J., Khatib, O. (eds.) Advances in Robot Kinematics, pp. 355–364. Springer, Cham (2014)

    Chapter  Google Scholar 

  27. Ma, Q., Chirikjian, G.S.: A closed-form lower bound on the allowable motion for an ellipsoidal body and environment. In: Proceedings of 2015 IDETC/CIE, pp. V05CT08A055–V05CT08A055. American Society of Mechanical Engineers (2015)

    Google Scholar 

  28. Ruan, S., Ding, J., Ma, Q., Chirikjian, G.S.: The kinematics of containment for N-dimensional ellipsoids. J. Mech. Rob. 11(4) (2019)

    Google Scholar 

  29. Sucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012)

    Article  Google Scholar 

  30. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008)

    Book  Google Scholar 

  31. Yan, Y.: Geometric motion planning methods for robotics and biological crystallography. Ph.D. thesis (2014)

    Google Scholar 

  32. Choset, H.M., Hutchinson, S., Lynch, K.M., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  33. Chirikjian, G.S., Mahony, R., Ruan, S., Trumpf, J.: Pose changes from a different point of view. J. Mech. Robot. 10(2), 021008 (2018)

    Article  Google Scholar 

  34. Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision and proximity queries. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3859–3866. IEEE (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Fan Yang, Mr. Thomas W. Mitchel and Mr. Zeyi Wang for useful discussions. This work was performed under National Science Foundation grant IIS-1619050 and Office of Naval Research Award N00014-17-1-2142. The ideas expressed in this paper are solely those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruan, S., Ma, Q., Poblete, K.L., Yan, Y., Chirikjian, G.S. (2020). Path Planning for Ellipsoidal Robots and General Obstacles via Closed-Form Characterization of Minkowski Operations. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_1

Download citation

Publish with us

Policies and ethics