Skip to main content

Practical Exponential Coordinates Using Implicit Dual Quaternions

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIII (WAFR 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Included in the following conference series:

Abstract

Modern approaches for robot kinematics employ the product of exponentials formulation, represented using homogeneous transformation matrices. Quaternions over dual numbers are an established alternative representation; however, their use presents certain challenges: the dual quaternion exponential and logarithm contain a zero-angle singularity, and many common operations are less efficient using dual quaternions than with matrices. We present a new derivation of the dual quaternion exponential and logarithm that removes the singularity, and we show an implicit representation of dual quaternions offers analytical and empirical efficiency advantages compared to both matrices and explicit dual quaternions. Analytically, implicit dual quaternions are more compact and require fewer arithmetic instructions for common operations, including chaining and exponentials. Empirically, we demonstrate a 25%–40% speedup to compute the forward kinematics of multiple robots. This work offers a practical connection between dual quaternions and modern exponential coordinates, demonstrating that a quaternion-based approach provides a more efficient alternative to matrices for robot kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Software available at http://amino.dyalab.org.

  2. 2.

    Software available at http://amino.dyalab.org.

References

  1. Altmann, S.L.: Hamilton, Rodrigues, and the quaternion scandal. Math. Mag. 62(5), 291–308 (1989)

    Article  MathSciNet  Google Scholar 

  2. Brockett, R.W.: Robotic manipulators and the product of exponentials formula. In: Mathematical Theory of Networks and Systems, pp. 120–129. Springer (1984)

    Google Scholar 

  3. Dam, E.B., Koch, M., Lillholm, M.: Quaternions, Interpolation and Animation. Technical report DIKU-TR-98/5, Datalogisk Institut, Københavns Universitet Copenhagen, July 1998

    Google Scholar 

  4. Dantam, N.T., Amor, H.B., Christensen, H., Stilman, M.: Online camera registration for robot manipulation. In: International Symposium on Experimental Robotics, pp. 179–194. Springer (2014)

    Google Scholar 

  5. Dantam, N.T., Amor, H.B., Christensen, H., Stilman, M.: Online multi-camera registration for bimanual workspace trajectories. In: International Conference on Humanoid Robots, pp. 588–593. IEEE (2014)

    Google Scholar 

  6. Funda, J., Paul, R.P.: A computational analysis of screw transformations in robotics. IEEE Trans. Robot. Autom. 6(3), 348–356 (1990)

    Article  Google Scholar 

  7. Gibbs, J.W.: Elements of Vector Analysis: Arranged for the Use of Students in Physics. Tuttle, Morehouse & Taylor, New Haven (1884)

    Google Scholar 

  8. Grassia, F.S.: Practical parameterization of rotations using the exponential map. J. Graph. Tools 3(3), 29–48 (1998)

    Article  Google Scholar 

  9. Hamilton, W.R.: Elements of Quaternions. Longmans, Green, & Company, Harlow (1866)

    Google Scholar 

  10. Han, D.-P., Wei, Q., Li, Z.-X.: Kinematic control of free rigid bodies using dual quaternions. Int. J. Autom. Comput. 5(3), 319–324 (2008)

    Article  Google Scholar 

  11. Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. (TOG) 27(4), 105 (2008)

    Article  Google Scholar 

  12. Kenwright, B.: A beginners guide to dual-quaternions: what they are, how they work, and how to use them for 3D character hierarchies. In: WSCG International Conference on Computer Graphics, Visualization and Computer Vision, October 2012

    Google Scholar 

  13. LaViola, J.J.: A comparison of unscented and extended Kalman filtering for estimating quaternion motion. In: Proceedings of the 2003 American Control Conference, vol. 3, pp. 2435–2440. IEEE (2003)

    Google Scholar 

  14. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  15. Markley, F.L., Mortari, D.: Quaternion attitude estimation using vector observations. J. Astronaut. Sci. 48(2), 359–380 (2000)

    Google Scholar 

  16. Murray, R.M.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  17. Özgür, E., Mezouar, Y.: Kinematic modeling and control of a robot arm using unit dual quaternions. Robot. Auton. Syst. 77, 66–73 (2016)

    Article  Google Scholar 

  18. Selig, J.M.: Geometric Fundamentals of Robotics. Springer, New York (2004)

    MATH  Google Scholar 

  19. Selig, J.M.: Exponential and Cayley maps for dual quaternions. Adv. Appl. Clifford Algebras 20(3–4), 923–936 (2010)

    Article  MathSciNet  Google Scholar 

  20. Shoemake, K.: Animating rotation with quaternion curves. In: ACM SIGGRAPH Computer Graphics, vol. 19, pp. 245–254. ACM (1985)

    Google Scholar 

  21. Srivatsan, R.A., Rosen, G.T., Mohamed, D.F.N., Choset, H.: Estimating SE(3) elements using a dual quaternion based linear Kalman filter. In: Robotics: Science and Systems (2016)

    Google Scholar 

  22. Study, E.: Geometrie der Dynamen. Druck und Verlag von B. G. Teubner, Leipzig (1903)

    MATH  Google Scholar 

  23. Study, E.: Foundations and goals of analytical kinematics. In: Berlin Mathematical Society (1913). Translated by Delphenich, D.H

    Google Scholar 

  24. Wahba, G.: A least squares estimate of satellite attitude. SIAM Rev. 7(3), 409 (1965)

    Article  Google Scholar 

  25. Wang, X., Han, D., Yu, C., Zheng, Z.: The geometric structure of unit dual quaternion with application in kinematic control. J. Math. Anal. Appl. 389(2), 1352–1364 (2012)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Zhu, H.: On the comparisons of unit dual quaternion and homogeneous transformation matrix. Adv. Appl. Clifford Algebras 24(1), 213–229 (2014)

    Article  MathSciNet  Google Scholar 

  27. Yang, A.T., Freudenstein, F.: Application of dual-number quaternion algebra to the analysis of spatial mechanisms. J. Appl. Mech. 31(2), 300–308 (1964)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil T. Dantam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dantam, N.T. (2020). Practical Exponential Coordinates Using Implicit Dual Quaternions. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_37

Download citation

Publish with us

Policies and ethics