Skip to main content

NutriSem: A Semantics-Driven Approach to Calculating Nutritional Value of Recipes

  • Conference paper
  • First Online:
Trends and Innovations in Information Systems and Technologies (WorldCIST 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1159))

Included in the following conference series:

  • 2178 Accesses

Abstract

The proliferation of recipes and other food information on the Web makes it difficult to identify recipes and foods for people who want to eat healthily. There are various tools related to calculating recipes nutritional values (NVs) but often the results obtained for the same recipe are varied. In this article we present NutriSem, a framework which allows automating the nutritional qualification of cooking recipes. It consists of four steps: (i) lexical enrichment of terms denoting ingredients; (ii) generating of nutritional calculus from lexical pattern and composition table requests; (iii) calculation and allocation of the final score; (iv) translation of the calculated score into a graphical scale. The core of the approach is based on mappings established between text corpora (cooking recipes) and structured data (food composition tables). A Knowledge Graph resource is used to enhance the quality of the mappings and therefore allow a better nutritional qualification of a given recipe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.etude-nutrinet-sante.fr.

  2. 2.

    https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/.

  3. 3.

    https://ciqual.anses.fr/.

  4. 4.

    https://fdc.nal.usda.gov/.

  5. 5.

    https://aliments-nutrition.canada.ca/cnf-fce/index-fra.jsp.

  6. 6.

    https://tinyurl.com/yx2f7bwz.

  7. 7.

    https://eren.univ-paris13.fr/index.php/en/.

  8. 8.

    http://www.nutryaccess.com/.

  9. 9.

    http://www.monmenu.fr/.

  10. 10.

    https://www.myfitnesspal.com/.

References

  1. Afshin, A., John, P., Fay, K.A., et al.: Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 393, 1958–1972 (2019). https://doi.org/10.1016/s0140-6736(19)30041-8. Elsevier BV

    Article  Google Scholar 

  2. Azaïs-Braesco, C., Goffi, C., Labouze, E.: Nutrient profiling: comparison and critical analysis of existing systems. Public Health Nutr. 9, 613–622 (2006). https://doi.org/10.1079/PHN2006966. Cambridge University Press

    Article  Google Scholar 

  3. Despres, S.: Construction d’une ontologie modulaire pour l’univers de la cuisine numérique. In: 25éme Journées francophones d’ingénierie des connaissances, Clermont-Ferrand, France, pp. 01–28 (2014)

    Google Scholar 

  4. Greenfield, H., Southgate, D.A.T.: Food composition data: production, management, and use. In: Food and Agriculture Organization of the United Nations, pp. 243. B.A. Burlingame et U.R. Charrondière, Rome (2007)

    Google Scholar 

  5. Nouvel, D., Antoine, J.E., Friburger, N.: Food composition data: production, management, and use. In: 5th Language and Technology Conference, LTC 2011, Poznan, Poland, pp. 226–237 (2014). https://doi.org/10.1007/978-3-319-08958-419

  6. Charrondiere, U.R., Burlingame, B., Berman, S., Elmadfa, I.: Food composition study guide: questions, exercises and answers. In: Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 282 (2011)

    Google Scholar 

  7. Hercberg, C.: Propositions pour un nouvel élan de la politique nutritionnelle française de santé publique. In: Rapport 2013 dans le cadre de la Stratégie Nationale de Santé, France, pp. 128. France (2013)

    Google Scholar 

  8. Ducrot, P., Méjean, C., Julia, C., et al.: P224: Compréhension objective vis-à-vis de différents systèmes d’information nutritionnelle simplifiés sur la face avant des emballages des aliments: étude NutriNet-Santé. Nutrition Clinique et Métabolisme 28, 186–187 (2014). https://doi.org/10.1016/s0985-0562(14)70866-0. Elsevier BV

  9. Magesh, P., Thangaraj, C.: Comparing the performance of semantic image retrieval using SPARQL query, decision tree algorithm and lire. J. Comput. Sci. 9, 1041–1050 (2013). https://doi.org/10.3844/jcssp.2013.1041.1050. Science Publications

  10. Harish, D.V.N., Srinivas, Y., Rajesh, K., Anuradha, P.: Image annotations using machine learning and features of ID3 algorithm. Int. J. Comput. Appl. 25, 45–49 (2011). https://doi.org/10.5120/3024-4090. Foundation of Computer Science

  11. Fadzli, S.A., Setchi, R.: Semantic approach to image retrieval using statistical models based on a lexical ontology. In: Knowledge-Based and Intelligent Information and Engineering Systems, pp. 240–250. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15384-6_26

  12. Haussmann, S., Seneviratne, O., Chen, Y., Neeman, Y., et al.: FoodKG: a semantics-driven knowledge graph for food recommendation. In: Lecture Notes in Computer Science, pp. 146–162. Springer (2019). https://doi.org/10.1007/978-3-030-30796-7_10

  13. He, J., Liu, L., Yu, F., Han, Y.: A method of RDF fuzzy query based on no query language service with permutated breadth first search algorithm. Procedia Comput. Sci. 100, 321–328 (2016). https://doi.org/10.1016/j.procs.2016.09.163. Elsevier BV

    Article  Google Scholar 

  14. Hamada, S.E.: Enrichment lexical knowledge with interword based features. In: IEEE International Conference on Systems, Man and Cybernetics. IEEE (2003). https://doi.org/10.1109/icsmc.2002.1176105

  15. Amato, F., Mazzeo, A., Elia, A., Maisto, A., Pelosi, S.: Morphosemantic strategies for the automatic enrichment of Italian lexical databases in the medical domain. Int. J. Grid Util. Comput. 8, 312 (2017). https://doi.org/10.1504/ijguc.2017.088262

    Article  Google Scholar 

  16. Møller, A., Ireland, J.: LanguaL 2017 - Multilingual Thesaurus. Technical report. Danish Food Informatics (2018). https://doi.org/10.13140/rg.2.2.13274.64964

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Azzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azzi, R., Despres, S., Diallo, G. (2020). NutriSem: A Semantics-Driven Approach to Calculating Nutritional Value of Recipes. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1159. Springer, Cham. https://doi.org/10.1007/978-3-030-45688-7_20

Download citation

Publish with us

Policies and ethics