Skip to main content

Heavy Metal Phytotoxicity: DNA Damage

  • Chapter
  • First Online:
Cellular and Molecular Phytotoxicity of Heavy Metals

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Heavy metals, such as lead, chromium, mercury, copper, and arsenic, are the major environmental pollutants. Heavy metal accumulation in soils is one of the major concerns for the agriculture sector due to its adverse effects on food production and safety. This chapter details the range of heavy metals, their toxicity for plants, kind of DNA damage caused by them, and their detection by several conventional and modern methods. Heavy metal toxicity has high impact on plants and consequently it directly affects the ecosystem. Plants grow under heavy metal-contaminated sites that exhibit reduced growth, lower biomass production, altered metabolism, and high metal accumulation. Heavy metals can cause various physiological, biochemical, and molecular changes in plants. Molecular changes may include DNA damage in plants that directly interact with DNA or indirectly inhibit the DNA-repairing enzymes and by producing ROS compounds. DNA damage includes strand breaks (SSBs and DSBs), DNA-protein cross-links, base and sugar lesions, abasic site production, and DNA modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Apurinic/apyrimidinic

APE:

Apurinic/apyrimidinic endonuclease

DSB:

Double-stranded breaks

EMS:

Ethyl methane sulfonate

FISH:

Fluorescent in situ hybridization

m5C:

5-Methylcytosine

MMS:

Methyl methane sulfonate

MNC:

Micronucleus test

RAPD:

Random amplified polymorphic DNA

SCE:

Sister chromatid exchange

SSB:

Single-stranded breaks

References

  • Achary VMM, Parinandi NL, Panda BB (2012) Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L. Environ Mol Mutagen 53:550–560

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Azooz MM et al (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. B R I 2:11–20

    CAS  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C et al (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Ali S, Farooq MA, Yasmeen T, Hussain S et al (2013) The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol Environ Saf 89:66–72

    Article  CAS  PubMed  Google Scholar 

  • Angelis KJ, Dušinská M, Collins AR (1999) Single cell gel electrophoresis: detection of DNA damage at different levels of sensitivity. Electrophoresis 20:2133–2138

    Article  CAS  PubMed  Google Scholar 

  • Angelis KJ, McGuffie M, Menke M et al (2000) Adaptation to alkylation damage in DNA measured by the comet assay. Environ Mol Mutagen 36:146–150

    Article  CAS  PubMed  Google Scholar 

  • Atienzar F, Evenden A, Jha A et al (2000) Optimized RAPD analysis generates high-quality genomic DNA profiles at high annealing temperature. Biotechniques 28:52–54

    Article  CAS  PubMed  Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 2012:1–6

    Article  CAS  Google Scholar 

  • Bakkaus E, Gouget B, Gallien JP et al (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instr Meth Phys Res Sect B 231:350–356

    Article  CAS  Google Scholar 

  • Bapat A, Glass LS, Luo M et al (2010) Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J Pharmacol Exp Ther 334:988–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68

    Article  CAS  PubMed  Google Scholar 

  • Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Boos G, Stopper H (2000) Genotoxicity of several clinically used topoisomerase II inhibitors. Toxicol Lett 116:7–16

    Article  CAS  PubMed  Google Scholar 

  • Borboa L, De la Torre C (1996) The genotoxicity of Zn (II) and Cd (II) in Allium cepa root meristematic cells. New Phytol 134:481–486

    Article  CAS  Google Scholar 

  • Britt AB (2004) Repair of DNA damage induced by solar UV. Photosynth Res 81:105–112

    Article  CAS  Google Scholar 

  • Bryant PE (1990) Restriction endonuclease-and radiation-induced DNA double-strand breaks and chromosomal aberrations: similarities and differences. In: Chromosomal aberrations. Springer, Berlin, pp 61–69

    Chapter  Google Scholar 

  • Burzyński M, Kłobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42:505–510

    Article  CAS  Google Scholar 

  • Cantos C, Francisco P, Trijatmiko KR et al (2014) Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci 5:1–8

    Article  Google Scholar 

  • Chang IY, Kim JN, Jun JY et al (2011) Repression of apurinic/apyrimidinic endonuclease by p53-dependent apoptosis in hydronephrosis-induced rat kidney. Free Radic Res 45:728–734

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhong S, Zhu X et al (2008) Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res 68:3169–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean Soil Air Water 37:304–313

    Article  CAS  Google Scholar 

  • Collins A (2000) Comparison of different methods of measuring 8-oxoguanine as a marker of oxidative DNA damage. Free Radic Res 32:333–341

    Article  CAS  Google Scholar 

  • Cortes F, Escalza P, Mateos S et al (1987) Factors affecting the production of SCEs by maleic hydrazide in root-tip chromosomes of Allium cepa. Mutat Res Lett 192:125–130

    Article  CAS  Google Scholar 

  • Cuypers ANN, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876

    Article  CAS  Google Scholar 

  • Cvjetko P, Milošić A, Domijan AM et al (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1–13

    Article  CAS  Google Scholar 

  • De Wolf H, Blust R, Backeljau T (2004) The use of RAPD in ecotoxicology. Mutat Res 566:249–262

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Ouyang X, Jin J et al (2013) Exploiting the higher specificity of silver amalgamation: selective detection of mercury (II) by forming Ag/Hg amalgam. Anal Chem 85:8594–8600

    Article  CAS  PubMed  Google Scholar 

  • Elbaz A, Wei YY, Meng Q et al (2010) Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Enan MR (2006) Application of random amplified polymorphic DNA (RAPD) to detect the genotoxic effect of heavy metals. Biotechnol Appl Biochem 43:147–154

    Article  CAS  PubMed  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  PubMed  Google Scholar 

  • Erturk FA, Ay H, Nardemir G et al (2013) Molecular determination of genotoxic effects of cobalt and nickel on maize (Zea mays L.) by RAPD and protein analyses. Toxicol Ind Health 29:662–671

    Article  CAS  PubMed  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    Article  CAS  PubMed  Google Scholar 

  • Floyd RA, West MS, Hogsett WE et al (1989) Increased 8-hydroxyguanine content of chloroplast DNA from ozone-treated plants. Plant Physiol 91:644–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedberg EC, Walker GC, Siede W et al (2005) DNA repair and mutagenesis. American Society for Microbiology Press, Washington

    Book  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G et al (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Maloney DJ, Dedkova LM et al (2008) Inhibitors of DNA polymerase β: activity and mechanism. Bioorg Med Chem 16:4331–4340

    Article  CAS  PubMed  Google Scholar 

  • Gichner T, Plewa MJ (1998) Induction of somatic DNA damage as measured by single cell gel electrophoresis and point mutation in leaves of tobacco plants. Mutat Res 401:143–152

    Article  CAS  PubMed  Google Scholar 

  • Gichner T, Patková Z, Száková J et al (2004) Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat Res 559:49–57

    Article  CAS  PubMed  Google Scholar 

  • Gichner T, Žnidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res 652:186–190

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gopal R, Dube BK, Sinha P et al (2003) Cobalt toxicity effects on growth and metabolism of tomato. Commun Soil Sci Plant Anal 34:619–628

    Article  CAS  Google Scholar 

  • Guimaraes ET, Domingos M, Alves ES et al (2000) Detection of the genotoxicity of air pollutants in and around the city of Sao Paulo (Brazil) with the Tradescantia-micronucleus (Trad-MCN) assay. Environ Exp Bot 44:1–8

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, Oxford

    Book  Google Scholar 

  • Han FX, Sridhar BM, Monts DL et al (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499

    Article  CAS  Google Scholar 

  • Hartwig A, Schlepegrell R, Beyersmann D (1990) Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells. Mutat Res 241:75–82

    Article  CAS  PubMed  Google Scholar 

  • Hartwig A, Asmuss M, Ehleben I et al (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110:797–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattab S, Chouba L, Ben Kheder M et al (2009) Cadmium-and copper-induced DNA damage in Pisum sativum roots and leaves as determined by the Comet assay. Plant Biosyst 143:6–11

    Article  Google Scholar 

  • Havel L, Durzan DJ (1996) Apoptosis in plants. Botanica Acta 109:268–277

    Article  CAS  Google Scholar 

  • Hawkes SJ (1997) What is a “heavy metal”? J Chem Educ 74:1374

    Article  CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M et al (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  PubMed  Google Scholar 

  • Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 477:7–21

    Article  CAS  PubMed  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaiswal AS, Banerjee S, Panda H et al (2009) A novel inhibitor of DNA polymerase β enhances the ability of temozolomide to impair the growth of colon cancer cells. Mol Cancer Res 7:1973–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YH, Clark AB, Slebos RJ et al (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet 34:326–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovtchev G, Menke M, Schubert I (2001) The comet assay detects adaptation to MNU-induced DNA damage in barley. Mutat Res 493:95–100

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Kim W (2013) Cobalt-induced oxidative stress causes growth inhibition associated with enhanced lipid peroxidation and activates antioxidant responses in Indian mustard (Brassica juncea L.) leaves. Acta Physiol Plant 35:2429–2443

    Article  CAS  Google Scholar 

  • Koppen G, Verschaeve L (1996) The alkaline comet test on plant cells: a new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutat Res 360:193–200

    Article  CAS  PubMed  Google Scholar 

  • Kozak J, West CE, White C et al (2009) Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA Repair 8:413–419

    Article  CAS  PubMed  Google Scholar 

  • Krepkiy D, Antholine WE, Myers C et al (2001) Model reactions of Cr (VI) with DNA mediated by thiol species. Mol Cell Biochem 222:213–219

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prasad MNV, Achary VMM et al (2013) Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ Sci Pollut Res 20:4551–4561

    Article  CAS  Google Scholar 

  • Labra M, Grassi F, Imazio S et al (2004) Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere 54:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81

    Article  CAS  PubMed  Google Scholar 

  • Levan A (1938) The effect of colchicine on root mitoses in Allium. Hereditas 24:471–486

    Article  Google Scholar 

  • Lin AJ, Zhang XH, Chen MM et al (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci 19:596–602

    Article  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  • Liu DH, Jaing WS, Li MX (1993) Effect of chromium on root growth and cell division of Allium cepa. Isr J Plant Sci 42:235–243

    Article  Google Scholar 

  • Liu W, Li PJ, Qi XM et al (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158–167

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhu SF, Zhang W et al (2007) Highly enantioselective insertion of carbenoids into N–H bonds catalyzed by copper complexes of chiral spiro bisoxazolines. J Am Chem Soc 129:5834–5835

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yang YS, Francis D et al (2008) Cadmium stress alters gene expression of DNA mismatch repair related genes in Arabidopsis seedlings. Chemosphere 73:1138–1144

    Google Scholar 

  • Liu W, Yang YS, Li PJ et al (2009) Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. J Hazard Mater 161:878–883

    Article  CAS  PubMed  Google Scholar 

  • Lopez E, Arce C, Oset-Gasque MJ et al (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940–951

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Kelley MR (2004) Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res 24:2127–2134

    CAS  PubMed  Google Scholar 

  • Ma TH, Cabrera GL, Chen R et al (1994) Tradescantia micronucleus bioassay. Mutat Res 310:221–230

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W (1998) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  Google Scholar 

  • Malar S, Sahi SV, Favas PJ et al (2015a) Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res 22:4597–4608

    Article  CAS  Google Scholar 

  • Malar S, Sahi SV, Favas PJC et al (2015b) Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in Sesbania grandiflora L. IJEST 12:3273–3282

    CAS  Google Scholar 

  • Mancini A, Buschini A, Restivo FM et al (2006) Oxidative stress as DNA damage in different transgenic tobacco plants. Plant Sci 170:845–852

    Article  CAS  Google Scholar 

  • Manikandan R, Sahi SV, Venkatachalam P (2015) Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant. Sci World J 2015:1–10

    Article  CAS  Google Scholar 

  • Martins CF, Dode MN, Báo SN et al (2007) The use of the acridine orange test and the TUNEL assay to assess the integrity of freeze-dried bovine spermatozoa DNA. Genet Mol Res 6:94–104

    CAS  PubMed  Google Scholar 

  • Meriga B, Reddy BK, Rao KR et al (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161:63–68

    Article  CAS  PubMed  Google Scholar 

  • Mišík M, Ma TH, Nersesyan A et al (2011) Micronucleus assays with Tradescantia pollen tetrads: an update. Mutagenesis 26:215–221

    Google Scholar 

  • Mohammed MZ, Vyjayanti VN, Laughton CA et al (2011) Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. Br J Cancer 104:653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohsenzadeh S, Shahrtash M, Mohabatkar H (2011) Cadmium-induced genotoxicity detected by the random amplification of polymorphism DNA in the maize seedling roots. J C M R 2:42–48

    Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G et al (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38

    Article  CAS  PubMed  Google Scholar 

  • Murali Achary VM, Panda BB (2009) Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 25:201–209

    Article  PubMed  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nakamura J, Swenberg JA (1999) Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res 59:2522–2526

    CAS  PubMed  Google Scholar 

  • Nanda R, Agrawal V (2016) Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ Exp Bot 125:31–41

    Article  CAS  Google Scholar 

  • Natarajan AT (2005) Chemical mutagenesis: from plants to human. Curr Sci 89:312–317

    CAS  Google Scholar 

  • Navarrete MH, Carrera P, de Miguel M et al (1997) A fast comet assay variant for solid tissue cells. The assessment of DNA damage in higher plants. Mutat Res 389:271–277

    Article  PubMed  Google Scholar 

  • Oliveira H, Spanò M, Santos C et al (2011) Flow cytometric analyses of sperm functions and genetic integrity. In: Male and female infertility: genetic causes, hormonal treatments and health effects, vol 1, pp 1–32

    Google Scholar 

  • Osman ME, El-Naggar AH, El-Sheekh MM et al (2004) Differential effects of Co2+ and Ni2+ on protein metabolism in Scenedesmus obliquus and Nitzschia perminuta. Environ Toxicol Pharmacol 16:169–178

    Article  CAS  PubMed  Google Scholar 

  • Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    Article  CAS  PubMed  Google Scholar 

  • Painter RB (1980) A replication model for sister-chromatid exchange. Mutat Res 70:337–341

    Article  CAS  PubMed  Google Scholar 

  • Pan JW, Zheng K, Ye D et al (2004) Aluminum-induced ultraweak luminescence changes and sister-chromatid exchanges in root tip cells of barley. Plant Sci 167:1391–1399

    Article  CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    Article  CAS  Google Scholar 

  • Pandey N, Pathak GC, Pandey DK et al (2009) Heavy metals, Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Braz J Plant Physiol 21:103–111

    Article  Google Scholar 

  • Pascal JM, O’Brien PJ, Tomkinson AE et al (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432:473–478

    Article  CAS  PubMed  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B et al (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Peters AH, Schübeler D (2005) Methylation of histones: playing memory with DNA. Curr Opin Cell Biol 17:230–238

    Article  CAS  PubMed  Google Scholar 

  • Peterson PJ, Benson LM, Zieve R (1981) Metalloids. In: Effect of heavy metal pollution on plants. Springer, Dordrecht, pp 279–342

    Chapter  Google Scholar 

  • Poli P, Buschini A, Ficarelli A et al (1999) The comet assay applied to microorganisms and plants: methods and problems. Neoplasma 46:74–75

    Google Scholar 

  • Pourrut B, Jean S, Silvestre J et al (2011) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res 726:123–128

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. In: Heavy metal stress in plants. Springer, Berlin, pp 345–391

    Chapter  Google Scholar 

  • Procházková D, Wilhelmová N, Pavlíková D et al (2013) Zinc induces DNA damage in tobacco roots. Biol Plant 57:783–787

    Article  CAS  Google Scholar 

  • Rank J, Nielsen MH (1997) Allium cepa anaphase–telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate. Mutat Res 390:121–127

    Article  CAS  PubMed  Google Scholar 

  • Reardon JT, Cheng Y, Sancar A (2006) Repair of DNA–protein cross-links in mammalian cells. Cell Cycle 5:1366–1370

    Article  CAS  PubMed  Google Scholar 

  • Regier N, Larras F, Bravo AG et al (2013) Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters. Chemosphere 90:595–602

    Article  CAS  PubMed  Google Scholar 

  • Roldán-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681:169–179

    Article  PubMed  CAS  Google Scholar 

  • Rucińska R, Sobkowiak R, Gwóźdź EA (2004) Genotoxicity of lead in lupin root cells as evaluated by the comet assay. Cell Mol Biol Lett 9:519–528

    PubMed  Google Scholar 

  • Sestili P, Diamantini G, Bedini A et al (2002) Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity induced by tert-butylhydroperoxide via an iron-chelating mechanism. Biochem J 364:121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B et al (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Shi X, Mao Y, Knapton AD et al (1994) Reaction of Cr (VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: role of a Cr (IV)-mediated Fenton-like reaction. Carcinogenesis 15:2475–2478

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner H, Mun-Sik K, Helma C et al (1998) Genotoxic effects of heavy metals: comparative investigation with plant bioassays. Environ Mol Mutagen 31:183–191

    Article  CAS  PubMed  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Stolarek M, Gruszka D, Braszewska-Zalewska A et al (2015) Alleles of newly identified barley gene HvPARP3 exhibit changes in efficiency of DNA repair. DNA Repair 28:116–130

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Urrabaz R, Nguyen M et al (2001) Elevated expression of DNA ligase I in human cancers. Clin Cancer Res 7:4143–4148

    CAS  PubMed  Google Scholar 

  • Tajmir-Riahi HA, Naoui M, Ahmad R (1993) The effects of Cu2+ and Pb2+ on the solution structure of calf thymus DNA: DNA condensation and denaturation studied by Fourier transform IR difference spectroscopy. Biopolymers 33:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Taspinar MS, Agar G, Yildirim N et al (2009) Evaluation of selenium effect on cadmium genotoxicity in Vicia faba using RAPD. J Food Agric Environ 7:857–860

    CAS  Google Scholar 

  • Tsuboi H, Kouda K, Takeuchi H et al (1998) 8-Hydroxydeoxyguanosine in urine as an index of oxidative damage to DNA in the evaluation of atopic dermatitis. Br J Dermatol 138:1033–1035

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Ahmad P, Panda BB et al (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681:134–149

    Article  CAS  PubMed  Google Scholar 

  • van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Vanyushin BF, Ashapkin VV (2009) DNA methylation in plants. Nova Biochemical Book

    Google Scholar 

  • Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta 1809:360–368

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T et al (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Gao F, Guo BQ et al (2013) Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci 14:11125–11144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Yi H, Yi M (2010) Assessment of arsenic toxicity using Allium/Vicia root tip micronucleus assays. J Hazard Mater 176:952–956

    Article  CAS  PubMed  Google Scholar 

  • Xanthoudakis S, Curran T (1996) Redox regulation of AP-1. In: Biological reactive intermediates V. Springer, Boston, pp 69–75

    Chapter  Google Scholar 

  • Yendle JE, Tinwell H, Elliott BM et al (1997) The genetic toxicity of time: importance of DNA-unwinding time to the outcome of single-cell gel electrophoresis assays. Mutat Res 375:125–136

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Wu L, Jiang L (2007) Genotoxicity of arsenic evaluated by Allium-root micronucleus assay. Sci Total Environ 383:232–236

    Article  CAS  PubMed  Google Scholar 

  • Yıldız M, Ciğerci İH, Konuk M et al (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere 75:934–938

    Article  PubMed  CAS  Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Ser Bot 47:157–164

    Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhen JXFZH, Dai ZJCHM, Ren Y (1998) Application of comet assay in plant protoplast apoptosis detection. Acta Bot Sin 10:10

    Google Scholar 

  • Zhou Y, Vaidya VS, Brown RP et al (2007) Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci 101:159–170

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Wang M, Jiang W et al (2006) Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biol Cracov Ser Bot 48:7–12

    Google Scholar 

Download references

Acknowledgement

Authors want to acknowledge the computational facility provided by the Department of Bioscience and Biotechnology, Banasthali Vidyapith.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, S., Khan, S. (2020). Heavy Metal Phytotoxicity: DNA Damage. In: Faisal, M., Saquib, Q., Alatar, A.A., Al-Khedhairy, A.A. (eds) Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-45975-8_10

Download citation

Publish with us

Policies and ethics