Skip to main content

Biosensors: A Biotechnological Tool for Monitoring Environmental Pollution

  • Chapter
  • First Online:
Bioremediation and Biotechnology, Vol 3

Abstract

Biosensor is an analytical tool comprised of a recognition element of biological origin and a physico-chemical transducer. They convert a bio-signal into a measurable response. The bio-recognition element is immobilized on an appropriate support matrix. The binding of the specific analyte to its complementary bio-recognition element becomes the principle of detection. Biosensors have gained huge significance in the fields of defense, biomedicine, food industries, drug discovery, and environmental pollution monitoring. The use of such tools is speedily rising and their production for incessant and real-time detection is earning much importance. Due to their tremendous sensitivity, specificity, and selectivity they are used for bio-monitoring environmental health. The environment is incessantly burdened with number of pollutants released by anthropogenic actions that harm the ecological equilibrium, thereby threatening the integrity of environment. The occurrence of these pollutants is turning into a universal challenge for environmental safety and human wellbeing. Even though regulatory authorities are trying to combat these pollutants at the source of entry, still it needs an efficient and integrated ecological management plan. Hence, the entry of these effluents into the environment needs to be minimized. Consequently, there is growing need to methods that can detect and monitor these environmental pollutants in perceptive and selective approach to facilitate efficient remediation. Efficient tools are needed to monitor these pollutants which will act as early warning systems. Presently, a large spectrum of biosensors has been designed that facilitate the detection of pollutants by measuring color, light, fluorescence, or electric current. Modern trend in monitoring of environment is utilization of novel and innovative biotechnological techniques with focus on genetic or protein engineering. Besides, synthetic biology to program microbes may also be utilized to enhance the specificity, selectivity, and accuracy of biosensors. They can sense general or specific toxicity generated by different types of pollutants. Application of biosensors has therefore a great potential for ecological scrutiny and recognition of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Yoshida WA, Ikebukuro K (2014) Electrochemical biosensors using aptamers for theranostics. Adv Biochem Eng Biotechnol 140:183–202

    CAS  PubMed  Google Scholar 

  • Akki SU, Werth CJ, Silverman SK (2015) Selective aptamers for detection of estradiol and ethynylestradiol in natural waters. Environ Sci Technol 49:9905–9913

    Article  CAS  PubMed  Google Scholar 

  • Antikainen R, Lappalainen S, Lonnqvist A, Maksi MK, Reijula K, Uusi RE (2008) Exploring the relationship between indoor air and productivity. Scand J Work Environ Health 2:79–82

    Google Scholar 

  • Bahadir EB, Sezginturk MK (2017) Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem 478:107–120

    Article  CAS  Google Scholar 

  • Bako BZ, Wargocki P, Weschler CJ, Fanger PO (2004) Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air 14:178–187

    Article  CAS  Google Scholar 

  • Barbulescu A, Duteanu N, Negrea A, Ghangrekar MM (2018) New trends in monitoring and removing the pollutants from water. J Chem 7:1–9

    Article  Google Scholar 

  • Bari MA, Kindzierski WB, Wheeler AJ, Heroux ME, Wallace LA (2015) Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build Environ 90:114–124

    Article  Google Scholar 

  • Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z (2016) Fluorescence-based biosensor for monitoring of environmental pollutants: from concepts to field application. Biosens Bioelectron 84:97–105

    Article  CAS  PubMed  Google Scholar 

  • Biran I, Babai R, Levcov K, Rishpon J, Ron EZ (2000) Online and in situ monitoring of environmental pollutants:electrochemical biosensing of cadmium. Environ Microbiol 2:285–290

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Chen X, Zhang L, Gao J, Ma Q (2017) Electrochemiluminescence detection of Escherichia coli O157:H7 based on a novel polydopamine surface imprinted polymer biosensor. ACS Appl Mater Interfaces 9:5430–5436

    Article  CAS  PubMed  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Google Scholar 

  • Dai Y, Liu CC (2017) Detection of 17-estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors 7:7–15

    Article  CAS  Google Scholar 

  • Daunert S, Barret G, Feliciano JS, Shetty RS, Shrestha S, Smith WA (2001) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter. Chem Rev 100(7):2705–2738

    Article  CAS  Google Scholar 

  • Dhewa T (2015) Biosensor for environmental monitoring: an update. Inter J Environ Res 3(2):212–218

    CAS  Google Scholar 

  • Dias AD, Kingsley DM, Corr DT (2014) Recent advances in bioprinting and applications for biosensing. Biosensors 4:111–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    Article  CAS  PubMed  Google Scholar 

  • Etzov E, Cohen A, Marks RS (2015) Bioluminescent liquid light guide pad biosensor for indoor air toxicity monitoring. Anal Chem 87(7):3655–3661

    Article  CAS  Google Scholar 

  • Fan L, Zhao G, Shi H, Liu M, Wang Y, Ke H (2018) A femtomolar level and highly selective estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. Environ Sci Technol 48:5754–5761

    Article  CAS  Google Scholar 

  • Gruhl FJ, Rapp BE, Lange K (2013) Biosensors for diagnostic applications. Adv Biochem Eng Biotechnol 133:115–148

    CAS  PubMed  Google Scholar 

  • Guo L, Li Z, Chen H, Wu Y, Chen L, Song Z, Lin T (2017) Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal Chim Acta 967:59–63

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Sang S, Jian A, Gao S, Duan Q, Ji J, Zhang Q, Zhang W (2018) A bovine serum albumin-coated magnetoelastic biosensor for the wireless detection of heavy metal ions. Sensors Actuators B Chem 256:318–324

    Article  CAS  Google Scholar 

  • Hui PS, Wong LT, Mui KW, Law KY (2007) Survey of unsatisfactory levels of airborne bacteria in air-conditioned offices. Indo Built Environ 16(2):130–138

    Article  CAS  Google Scholar 

  • Justino CI, Freitas AC, Pereira R, Duarte AC, Rocha-Santos TA (2015) Recent developments in recognition elements for chemical sensors and biosensors. Trends Anal Chem 68:2–17

    Article  CAS  Google Scholar 

  • Kawamura K, Kerman K, Fujihara M, Nagatani N, Hashiba T, Tamiya E (2005) Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensors Actuators B Chem 105(2):495–501

    Article  CAS  Google Scholar 

  • Ko PJ, Ishikawa R, Sohn H, Sandhu A (2013) Porous silicon platform for optical detection of functionalized magnetic particles biosensing. J Nanosci Nanotechnol 13:2451–2460

    Article  CAS  PubMed  Google Scholar 

  • Kohler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366:769–779

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Rani R (2013) Development of biosensors for the detection of biological warfare agents: its issues and challenges. Sci Prog 96:294–308

    Article  CAS  PubMed  Google Scholar 

  • Kwon SJ, Bard AJ (2012) DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc 134:10777–10779

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang Y, Zhang L, Ge S, Yan M, Yu J (2017) Steric paper based ratio-type electrochemical biosensor with hollow-channel for sensitive detection of Zn2+. Sci Bull 62:1114–1121

    Article  CAS  Google Scholar 

  • Long F, Zhu A, Shi H, Wang H (2013) Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci Rep 3:2308–2311

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Macias D, Dean ZS, Kreger NR, Wong PK (2015) A UAV-mounted whole cell biosensor system for environmental monitoring applications. IEEE Trans Nanobioscience 14:811–817

    Article  PubMed  PubMed Central  Google Scholar 

  • Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23

    Article  CAS  Google Scholar 

  • Mauriz E, Calle A, Manclus JJ, Montoya A, Hildebrandt A, BarcelO A, Lechuga LM (2007) Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosens Bioelectron 22:1410–1418

    Article  CAS  PubMed  Google Scholar 

  • Mayorga MC, Pino F, Kurbanoglua S, Rivas L, Ozkan SA, Merkoc A (2014) Iridium oxide nanoparticles induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J Mater Chem 2:2233–2239

    Article  Google Scholar 

  • McPartlin DA, Loftus JH, Crawley AS, Silke J, Murphy CS, Kennedy RJ (2017) Biosensors for the monitoring of harmful algal blooms. Curr Opin Biotechnol 45:164–169

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Wei J, Ren X, Ren J, Tang F (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron 47:402–407

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kumar J, Melo JS (2017) An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles. Biosens Bioelectron 87:332–338

    Article  CAS  PubMed  Google Scholar 

  • Mittelmann AS, Ron EZ, Rishpon J (2002) Amperometric quantification of total coliforms and specific detection of Escherichia coli. Anal Chem 74:903–907

    Article  CAS  PubMed  Google Scholar 

  • Neufeld T, Schwartz MA, Biran D, Ron EZ, Rishpon J (2003) Application of phage typing in amperometric identification and quantification of specific bacteria. Anal Chem 75:580–585

    Article  CAS  PubMed  Google Scholar 

  • Oldach L, Zhang J (2014) Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem Biol 21:186–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson N, Bae J (2019) Biosensors-publication trends and knowledge domain visualization. Sensors 19:2614–2615

    Article  CAS  Google Scholar 

  • Orozco J, Villa E, Manes C, Medlin LK, Guillebault D (2016) Electrochemical RNA genosensors for toxic algal species: enhancing selectivity and sensitivity. Talanta 161:560–566

    Article  CAS  PubMed  Google Scholar 

  • Pasternak G, Grenmana J, Ieropoulos IA (2017) Self powered, autonomous Biological Oxygen Demand biosensor foronline water quality monitoring. Sens Acta B Chem 244:815–822

    Google Scholar 

  • Petit PC, Fine DH, Vasquez GB, Gamero L, Slaughter MS, Dasse KA (2017) The pathophysiology of nitrogen dioxide during inhaled nitric oxide therapy. ASAIO J 63:7–13

    Article  CAS  PubMed  Google Scholar 

  • Rotariu L, Zamfir LG, Bala C (2012) A rational design of the multiwalled carbon nanotubes- 7,7,8,8- tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors. Anal Chem Acta 748:81–88

    Article  CAS  Google Scholar 

  • Salvador JP, Marco MP (2016) Amperometric biosensor for continuous monitoring Irgarol 1 in sea water. Electroanalysis 28:1833–1838

    Article  CAS  Google Scholar 

  • Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W (2015) Progress of new label-free techniques for biosensors: a review. Crit Rev Biotechnol 15:1–17

    Article  CAS  Google Scholar 

  • Scott DL, Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal Chem 69:16–20

    Article  CAS  PubMed  Google Scholar 

  • Senveli SU, Tigli O (2013) Biosensors in the small scale: methods and technology trends. IET Nanobiotechnol 7:7–21

    Article  CAS  PubMed  Google Scholar 

  • Singh AC, Bacher G, Bhand SA (2017) Label free immunosensor for ultrasensitive detection of estradiol in water. Electrochem Acta 232:30–37

    Article  CAS  Google Scholar 

  • Sun JZ, Peter KG, Si RW, Zhai DD, Liao ZH, Sun DZ (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol 71:801–809

    Article  CAS  PubMed  Google Scholar 

  • Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Bhardwaj A (2015) Biosensor technology for pesticides – a review. Appl Biochem Biotechnol 175:3093–3119

    Article  CAS  PubMed  Google Scholar 

  • Wu LL, Wang Z, Zhao SN, Meng X, Song XZ, Feng J, Song SY, Zhang HJ (2016) A metal-organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury (II) ion detection. Chem Eur J 22:477–480

    Article  CAS  PubMed  Google Scholar 

  • Xia N, Zhang Y, Chang K, Gai X, Jing YA, Li S, Liu L, Qu GA (2015) Ferrocene phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos. J Electroanal Chem 746:68–74

    Article  CAS  Google Scholar 

  • Xu M, Obodo DA, Yadavalli VK (2019) The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 124:96–114

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz E, Majidi DO, Ozgur E, Denizl A (2015) Whole cell imprinting based Escherichia coli sensors: a study form SPR and QCM. Sensors Actuators B Chem 209:714–721

    Article  CAS  Google Scholar 

  • Yoo MS, Shin M, Kim Y, Jang M, Choi YE, Park SJ, Choi J, Lee J, Park C (2017) Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere 175:269–274

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhou Y, Tang L, Zeng G, Zhang J, Peng B, Xie XL, Lai C, Long B, Zhu J (2016) Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride polyaniline nanofibers and square wave anodic stripping voltammetry. Nanomaterials 6:6–7

    Article  CAS  Google Scholar 

  • Zhang Y, Chen M, Li H, Pang P, Wang H, Wu Z, Yang W (2017) A molybdenum disulfide/gold nanorod composite-based electrochemical immunosensor for sensitive and quantitative detection of microcystin-LR in environmental samples. Sensors Actuators B Chem 244:606–615

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, R., Singh, D.V. (2020). Biosensors: A Biotechnological Tool for Monitoring Environmental Pollution. In: Bhat, R., Hakeem, K., Saud Al-Saud, N. (eds) Bioremediation and Biotechnology, Vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-46075-4_15

Download citation

Publish with us

Policies and ethics