Skip to main content

A Progressive Formalization of Tacit Knowledge to Improve Semantic Expressiveness of Biodiversity Data

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2019)

Abstract

The majority of biodiversity data available on the Web are structured, lacking unstructured features such as tacit knowledge, images, audios, text documents, among others. Tacit knowledge can be used to add more expressiveness to ontologies. To achieve that, the knowledge needs to be elicited and formalized and further incorporated into an ontology. This paper aims to present a Progressive Formalization Schema (PFS) to formalize tacit knowledge into different levels of granularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An expert can be understood as an individual who has valuable knowledge that can be used by someone or an organization (Kendal and Creen 2016).

  2. 2.

    According to Carey and Spelke (1994), “It represents a person’s thought process for how something works (i.e. the understanding of the world around). Based on incomplete facts, past experiences and even intuitive perceptions. They help to define actions and behaviors, influence what will be considered most relevant in complex situations and define how individuals confront and solve problems.”

References

  • Albuquerque, A.C.F., dos Santos, J.L.C., de Castro Júnior, A.N.: Elicitation taxonomy for acquiring biodiversity knowledge. In: Ngonga Ngomo, A.-C., Křemen, P. (eds.) KESW 2016. CCIS, vol. 649, pp. 157–172. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45880-9_13

    Chapter  Google Scholar 

  • Albuquerque, A.C.F.: Um Framework Conceitual para Integrar Conhecimento Tácito Científico. Tese (Doutorado em Informática) – Universidade Federal do Amazonas (2016)

    Google Scholar 

  • Albuquerque, A.C.F., Santos, J.L.C., Castro Jr., A.N.: OntoBio: a biodiversity domain ontology for amazonian. In: Proceedings of 48th Hawaii International Conference on System Sciences HICSS 2015, Kauai, Hawaii, 5–8 January (2015). ISBN 978-1-4799-7367-5

    Google Scholar 

  • Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering intelligent systems on the knowledge formalization continuum. Int. J. Appl. Math. Comput. Sci. 21(1), 27–39 (2011). https://doi.org/10.2478/v10006-011-0002-5. No. 1

    Article  Google Scholar 

  • Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kaufmann Publishers Inc., San Francisco, Elsevier, San Diego (2004). ISBN 1558609326

    Google Scholar 

  • Carey, S., Spelke, E.: Domain-specific knowledge and conceptual change. In: Hirschfeld, L.A., Gelman, S.A. (eds.) Mapping the Mind, pp. 169–200. Cambridge University Press, Cambridge (1994)

    Chapter  Google Scholar 

  • Clark, C.: Ten Popular Concept Mapping Tools. NspireD2, Kaneb Center, University of Notre Dame (2011). https://ltlatnd.wordpress.com/2011/05/11/ten-popular-concept-mapping-tools/. Accessed Mar 2019

  • Collins, H.M.: Tacit knowledge, trust and the Q of sapphire. Soc. Stud. Sci. 31(1), 71–85 (2001)

    Article  Google Scholar 

  • Gonçalves, B., Zamborlini, V., Guizzardi, G.: An ontological analysis of the electrocardiogram. RECIIS Electron. J. Commun. Inf. Innov. Health (English edition. Online) 3, 45–59 (2009)

    Google Scholar 

  • Gruber, T.: Collective knowledge systems: where the social web meets the semantic web. Web Semant. 6(1), 4–13 (2008)

    Article  Google Scholar 

  • Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D. thesis (CUM LAUDE), University of Twente, The Netherlands. Published as the same name book in Telematica Institute Fundamental Research. Series no. 15, ISBN 90-75176-81-3, ISSN 1388-1795, no. 015. CTIT Ph.D. thesis. ISSN 1381-3617, no. 05–74, Holanda (2005)

    Google Scholar 

  • Guizzardi, G.: The problem of transitivity of part-whole relations in conceptual modeling revisited. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 94–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02144-2_12

    Chapter  Google Scholar 

  • Kendal, S., Creen, M.: An Introduction to Knowledge Engineering. Springer, London (2007). https://doi.org/10.1007/978-1-84628-667-4

    Book  MATH  Google Scholar 

  • Klein, P., Luetzenberger, J., Thoben, K.-D.: A proposal for knowledge formalization in product development processes. In: Proceedings of the 20th International Conference on Engineering Design (ICED 2015), Milan, Italy, vol. 10: Design Information and Knowledge Management, pp. 261–272 (2015). ISBN 978-1-904670-73-5

    Google Scholar 

  • Leite, F.C.L.: Gestão do Conhecimento Científico no Contexto Acadêmico: Proposta de um Modelo Conceitual. 240 f. Dissertação (Mestrado em Ciência da Informação)– Programa de Pós-Graduação em Ciência da Informação, Universidade de Brasília, Brasília (2006)

    Google Scholar 

  • Lidwell, W., Holden, K., Butler, J.: Universal Principles of Design. Rockport Publishers, Minnespolis (2003)

    Google Scholar 

  • Lofting, C.J.: The Neuro-Cognitive and Emotional Roots of Mathematics (2015). http://pages.prodigy.net/lofting/NeuroMaths3.htm. Accessed Apr 2019

  • McGuiness, D.L.: Ontologies come of age. In: Fensel, D., Hendler, J.A., Lieberman, H., Wahlster, W. (eds.) Spining the Semantic Web, pp. 171–194. MIT Press, Cambridge (2003)

    Google Scholar 

  • McGuiness, D.L., Harmelen, F.V.: OWL Ontology Language Overview. W3C Recommendation (2004). https://www.w3.org/TR/owl-features/. Accessed Mar 2019

  • Millard, D.E., Gibbins, N.M., Michaelides, D.T., Weal, M.J.: Mind the semantic gap. In: HYPERTEXT 2005: Proceedings of the 16th ACM Conference on Hypertext and Hypermedia, Salzburg, Austria, pp. 54–62 (2005)

    Google Scholar 

  • Nalepa, G.J., Ligęza, A., Kaczor, K.: Overview of knowledge formalization with XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011. LNCS, vol. 6826, pp. 329–336. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22546-8_26

    Chapter  Google Scholar 

  • Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, New York (1995)

    Google Scholar 

  • Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University Press, Cornell University, New York (1984). ISBN 9780521319263

    Book  Google Scholar 

  • Noy, N., Sintek, M., Decker, S., Crubézy, M., Musen, M.: Creating semantic web contents with protege-2000. IEEE Intell. Syst. 16(2), 60–71 (2001)

    Article  Google Scholar 

  • Romanov, L.: Notes re: personal knowledge formalization and modeling. J. Knowl. Manag. Pract. 6 (2005). In The Knowledge Garden. ISSN 1705-9232

    Google Scholar 

  • Russel, S., Norvig, P.: Artificial Intelligence - A Modern Approach. Prentice Hall Series in AI, Englewood Cliffs (2010)

    Google Scholar 

  • Schaffert, S., Gruber, A., Westenthaler, R.: A semantic wiki for collaborative knowledge formation. In: Proceedings of the SEMANTICS 2005 Conference, Vienna, Austria (2006)

    Google Scholar 

  • Sowa, J.F.: Knowledge Representation: Logical, Philosophical and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000). Pgs 10, 22, 159. ISBN 0-534-94965-7

    Google Scholar 

  • Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectivity. SIGMOD Rec. 33(4), 58–64 (2004)

    Article  Google Scholar 

  • Wang, Y., Sure, Y., Stevens, R., Rector, A.: Knowledge elicitation plug-in for Protégé: card sorting and laddering. In: Mizoguchi, R., Shi, Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 552–565. Springer, Heidelberg (2006). https://doi.org/10.1007/11836025_53

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was partially supported by FAPEAM (Foundation for the State of Amazonas Research) - Grant Number. 062.01502/2018 – FIXAM program. Thanks, are also due to INPA/LIS, and researchers of INPA’s Ichthyology Group for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Corrêa Flôres Albuquerque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albuquerque, A.C.F., Campos dos Santos, J.L. (2020). A Progressive Formalization of Tacit Knowledge to Improve Semantic Expressiveness of Biodiversity Data. In: Lossio-Ventura, J.A., Condori-Fernandez, N., Valverde-Rebaza, J.C. (eds) Information Management and Big Data. SIMBig 2019. Communications in Computer and Information Science, vol 1070. Springer, Cham. https://doi.org/10.1007/978-3-030-46140-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46140-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46139-3

  • Online ISBN: 978-3-030-46140-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics