Skip to main content

Brain Tumor Segmentation Using Attention-Based Network in 3D MRI Images

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Included in the following conference series:

Abstract

Gliomas are the most common primary brain malignancies. Identifying the sub-regions of gliomas before surgery is meaningful, which may extend the survival of patients. However, due to the heterogeneous appearance and shape of gliomas, it is a challenge to accurately segment the enhancing tumor, the necrotic, the non-enhancing tumor core and the peritumoral edema. In this study, an attention-based network was used to segment the glioma sub-regions in multi-modality MRI scans. Attention U-Net was employed as the basic architecture of the proposed network. The attention gates help the network focus on the task-relevant regions in the image. Besides the spatial-wise attention gates, the channel-wise attention gates proposed in SE Net were also embedded into the segmentation network. This attention mechanism in the feature dimension prompts the network to focus on the useful feature maps. Furthermore, in order to reduce false positives, a training strategy combined with a sampling strategy was proposed in our study. The segmentation performance of the proposed network was evaluated on the BraTS 2019 validation dataset and testing dataset. In the validation dataset, the dice similarity coefficients of enhancing tumor, tumor core and whole tumor were 0.759, 0.807 and 0.893 respectively. And in the testing dataset, the dice scores of enhancing tumor, tumor core and whole tumor were 0.794, 0.814 and 0.866 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

    Google Scholar 

  2. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017)

    Google Scholar 

  3. Bakas, S., Reyes, M., Jakab, A., Bauer, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge, arXiv preprint arXiv:1811.02629 (2019)

  4. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization, pp. 311–320 (2019)

    Google Scholar 

  9. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No New-Net, pp. 234–244 (2019)

    Google Scholar 

  10. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arXiv preprint arXiv:1810.04805 (2018)

  11. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., et al.: Attention U-Net: learning where to look for the pancreas, arXiv preprint arXiv:1804.03999 (2018)

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Abadi, M., Barham, P., Chen, J., Chen, Z., et al.: Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265–283 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Zhao, W., Zhao, J. (2020). Brain Tumor Segmentation Using Attention-Based Network in 3D MRI Images. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics