Skip to main content

Efficient Implementation of a Self-sufficient Solar-Powered Real-Time Deep Learning-Based System

  • Conference paper
  • First Online:
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference (EANN 2020)

Abstract

This paper presents a self-sufficient solar-powered real-time Deep Learning (DL) based system that runs inference 100% on solar energy and which is composed of an Nvidia Jetson TX2 board and a dual-axis solar tracker based on the cast-shadow principle. In order to have a higher energy being generated by the solar tracker as well as a lower energy consumption by the real-time DL-based system, we have: a) updated our solar tracker’s panel with a higher number of polycrystalline photovoltaic (PV) cells and connected it to a chain of two inverters, one accumulator and one solar charge controller; b) implemented a motion detection method that triggers the inference process only when there is substantial movement in webcam frame. Experimental results show that our solar tracker generates sufficient and constant solar energy for all the 4 DL models (VGG-19, InceptionV3, ResNet-50 and MobileNetV2) that are running in real-time on the Nvidia Jetson TX2 platform and which requires more than 5 times less energy when compared to a laptop having a Nvidia GTX 1060 GPU, proving that real-time DL-based systems can be powered by solar trackers without the need of traditional power plugs or need to pay for electricity bills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. arXiv:1906.02243 (2019)

  2. Schmidt, V., Luccioni, A., Mukkavilli, S.K., Balasooriya, N., Sankaran, K., Chayes, J., Bengio, Y.: Visualizing the consequences of climate change using cycle-consistent adversarial networks. arXiv:1905.03709 (2019)

  3. UN Sustainable Development Goals. https://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed 01 Dec 2019

  4. Nvidia Jetson TX2. https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/. Accessed 01 Dec 2019

  5. Yan, J., Yang, Y., Elia Campana, P., He, J.: City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China. Nat. Energy 4, 709–717 (2019)

    Article  Google Scholar 

  6. Rotar, R., Jurj, S.L., Opritoiu, F., Vladutiu, M.: Position optimization method for a solar tracking device using the cast-shadow principle. In: IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), Iasi, Romania, pp. 61–70. IEEE (2018)

    Google Scholar 

  7. Carballo, J.A., Bonilla, J., Berenguel, M., Fernandez-Reche, J., García, G.: New approach for solar tracking systems based on computer vision, low cost hardware and deep learning. arXiv:1809.07048v1 (2018)

  8. Jurj, S.L., Opritoiu, F., Vladutiu, M.: Real-time identification of animals found in domestic areas of Europe. In: Proceedings of the SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), 1143313, 31 January 2020. https://doi.org/10.1117/12.2556376

  9. Bradski, G.: The openCV library. Dr. Dobb’s J. Softw. Tools 120, 122–125 (2000)

    Google Scholar 

  10. Rungsuptaweekoon, K., Visoottiviseth, V., Takano, R.: Evaluating the power efficiency of deep learning inference on embedded GPU systems. In: 2nd International Conference on Information Technology (INCIT), Nakhonpathom, Thailand, pp. 1–5. IEEE (2017)

    Google Scholar 

  11. Yudin, D., Slavioglo, D.: Usage of fully convolutional network with clustering for traffic light detection. In: 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, pp. 1–6. IEEE (2018)

    Google Scholar 

  12. Shihadeh, J., Ansari, A., Ozunfunmi, T.: Deep learning based image classification for remote medical diagnosis. In: IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, pp. 1–8. IEEE (2018)

    Google Scholar 

  13. Yin, X., Chen, L., Zhang, X., Gao, Z.: Object detection implementation and optimization on embedded GPU system. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia, Spain, pp. 1–5. IEEE (2018)

    Google Scholar 

  14. Arechiga, A.P., Michaels, A.J., Black, J.T.: Onboard image processing for small satellites. In: NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, pp. 234–240. IEEE (2018)

    Google Scholar 

  15. Vandersteegen, M., Van Beeck, K., Goedemé, T.: Super accurate low latency object detection on a surveillance UAV. arXiv:1904.02024v1 (2019)

  16. Špaňhel, J., Sochor, J., Makarov, A.: Detection of traffic violations of road users based on convolutional neural networks. In: 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, pp. 1–6. IEEE (2018)

    Google Scholar 

  17. Yuan, L., Lu, F.: Real-time ear detection based on embedded systems. In: International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu, China, pp. 115–120. IEEE (2018)

    Google Scholar 

  18. Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li, P., Yan, T., Lendasse, A.: Embedded online fish detection and tracking system via YOLOv3 and parallel correlation filter. In: OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, pp. 1–6. IEEE (2018)

    Google Scholar 

  19. Saypadith, S., Aramvith, S.: Real-time multiple face recognition using deep learning on embedded GPU system. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, pp. 1318–1324. IEEE (2018)

    Google Scholar 

  20. Zhang, W., Sun, H., Zhao, D., Xu, L., Liu, X., Zhou, J., Ning, H., Guo, Y., Yang, S.: A streaming cloud platform for real-time video processing on embedded devices. IEEE Trans. Cloud Comput. 13, 1 (2019)

    Google Scholar 

  21. Goyal, M., Reeves, N.D., Rajbhandari, S., Yap, M.H.: Robust methods for real-time diabetic foot ulcer detection and localization on mobile devices. IEEE J. Biomed. Health Inf. 23, 1730–1741 (2019)

    Article  Google Scholar 

  22. Modasshir, M., Li, A.Q., Rekleitis, I.: Deep neural networks: a comparison on different computing platforms. In: 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, pp. 383–389. IEEE (2018)

    Google Scholar 

  23. Vaidya, B., Paunwala, C.: Comparative analysis of motion based and feature based algorithms for object detection and tracking. In: International Conference on Soft Computing and its Engineering Applications (icSoftComp), Changa, India. pp. 1–7. IEEE (2017)

    Google Scholar 

  24. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), Cambridge, UK, pp. 28–31. IEEE (2004)

    Google Scholar 

  25. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, USA, pp. 246–252. IEEE (1999)

    Google Scholar 

  26. Moon, S., Lee, J., Nam, D., Yoo, W., Kim, W.: A comparative study on preprocessing methods for object tracking in sports events. In: 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-si Gangwon-do, Korea (South), pp. 460–462. IEEE (2018)

    Google Scholar 

  27. Godbehere, A.B., Matsukawa, A., Goldberg, K.: Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In: 2012 American Control Conference (ACC), Montreal, QC, Canada, pp. 4305–4312. IEEE (2012)

    Google Scholar 

  28. Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–144. Springer, Boston (2002)

    Chapter  Google Scholar 

  29. Berthod, C., Kristensen, S.T., Strandberg, R., Odden, J.O., Nie, S., Hameiri, Z., Sætre, T.O.: Temperature sensitivity of multicrystalline silicon solar cells. IEEE J. Photovolt. 9, 957–964 (2019)

    Article  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556v6 (2015)

  31. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. arXiv:1409.4842v1 (2014)

  32. He, K., et al.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385. (2015)

  33. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. arXiv:1801.04381v4 (2019)

  34. TensorflowProtobuf. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/config.proto/. Accessed 01 Dec 2019

  35. Twilio Programmable SMS. https://www.twilio.com/docs/sms/send-messages. Accessed 01 Dec 2019

  36. JetPack. https://developer.nvidia.com/embedded/jetpack/. Accessed 01 Dec 2019

  37. Convenient Power Measurement Script on the Jetson TX2/Tegra X2. https://embeddeddl.wordpress.com/2018/04/25/convenient-power-measurements-on-the-jetson-tx2-tegra-x2-board/. Accessed 01 Dec 2019

  38. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. arXiv:1907.10597v3 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Liviu Jurj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jurj, S.L., Rotar, R., Opritoiu, F., Vladutiu, M. (2020). Efficient Implementation of a Self-sufficient Solar-Powered Real-Time Deep Learning-Based System. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48791-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48790-4

  • Online ISBN: 978-3-030-48791-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics