Skip to main content

XDN: Towards Efficient Inference of Residual Neural Networks on Cambricon Chips

  • Conference paper
  • First Online:
Benchmarking, Measuring, and Optimizing (Bench 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12093))

Included in the following conference series:

Abstract

In this paper, we present XDN, an optimization and inference engine for accelerating residual neural networks on Cambricon chips. We leverage a channel pruning method to compress the weights of ResNet-50. By exploring the optimization opportunities in computational graphs, we propose a layer fusion strategy, which dramatically decreases the number of scalar computation layers, such as Batch Normalization, Scale. Furthermore, we design an efficient implementation of XDN, including data preprocessing, hyper-parameter auto-tuning, etc. The experimental results show that the ResNet-50 model can achieve significant speedup without accuracy loss by using our XDN engine.

Li, G., Wang, X., Ma, X.—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.benchcouncil.org/testbed/index.html.

References

  1. Chen, T., et al.: Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In: ACM Sigplan Notices, pp. 269–284. ACM (2014)

    Google Scholar 

  2. Chen, Y., Chen, T., Xu, Z., Sun, N., Temam, O.: Diannao family: energy-efficient hardware accelerators for machine learning. Communi. ACM 1, 105–112 (2016)

    Article  Google Scholar 

  3. Chen, Y., et al.: Dadiannao: a machine-learning supercomputer. In: Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 609–622. IEEE Computer Society (2014)

    Google Scholar 

  4. Deng, W., Wang, P., Wang, J., Li, C., Guo, M.: PSL: exploiting parallelism, sparsity and locality to accelerate matrix factorization on x86 platforms. In: International Symposium on Benchmarking, Measuring and Optimization (Bench 2019). Springer (2019)

    Google Scholar 

  5. Gao, W., et al.: AIBench: towards scalable and comprehensive datacenter AI benchmarking. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_1

    Chapter  Google Scholar 

  6. Gao, W., et al.: AIBench: an industry standard internet service AI benchmark suite. arXiv preprint arXiv:1908.08998 (2019)

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. Guo, K., Zeng, S., Yu, J., Wang, Y., Yang, H.: A survey of FPGA-based neural network inference accelerators. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 12(1), 1–26 (2019)

    Article  Google Scholar 

  10. Hao, T., et al.: Edge AIBench: towards comprehensive end-to-end edge computing benchmarking. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 23–30. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_3

    Chapter  Google Scholar 

  11. Hao, T., Zheng, Z.: The implementation and optimization of matrix decomposition based collaborative filtering task on x86 platform. In: International Symposium on Benchmarking, Measuring and Optimization (Bench 2019). Springer (2019)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hou, P., Yu, J., Miao, Y., Tai, Y., Wu, Y., Zhao, C.: RVTensor: a light-weight neural network inference framework based on the risc-v architecture. In: International Symposium on Benchmarking, Measuring and Optimization (Bench 2019). Springer (2019)

    Google Scholar 

  14. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  15. Jiang, Z., et al.: HPC AI500: a benchmark suite for HPC AI systems. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 10–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_2

    Chapter  Google Scholar 

  16. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Li, J., Jiang, Z.: Performance analysis of cambricon MLU100. In: International Symposium on Benchmarking, Measuring and Optimization (Bench 2019). Springer (2019)

    Google Scholar 

  19. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and embedded device intelligence. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 31–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_4

    Chapter  Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  22. Xiong, X., Wen, X., Huang, C.: Improving RGB-D face recognition via transfer learning from a pretrained 2D network. In: Gao, W., et al. (eds.): Bench 2019, LNCS, vol. 12093, pp. 141–148. Springer, Cham (2019)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Key R&D Program of China under Grant No. 2017YFB1003103, the Key Program of National Natural Science Foundation of China under Grant No. 61432016, and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under Grant No. 61521092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Wang, X., Ma, X., Liu, L., Feng, X. (2020). XDN: Towards Efficient Inference of Residual Neural Networks on Cambricon Chips. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D. (eds) Benchmarking, Measuring, and Optimizing. Bench 2019. Lecture Notes in Computer Science(), vol 12093. Springer, Cham. https://doi.org/10.1007/978-3-030-49556-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49556-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49555-8

  • Online ISBN: 978-3-030-49556-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics