Skip to main content

Assisted Parameter and Behavior Calibration in Agent-Based Models with Distributed Optimization

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection (PAAMS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12092))

Abstract

Agent-based modeling (ABM) has many applications in the social sciences, biology, computer science, and robotics. One of the most important and challenging phases in agent-based model development is the calibration of model parameters and agent behaviors. Unfortunately, for many models this step is done by hand in an ad-hoc manner or is ignored entirely, due to the complexity inherent in ABM dynamics. In this paper we present a general-purpose, automated optimization system to assist the model developer in the calibration of ABM parameters and agent behaviors. This system combines two popular tools: the MASON agent-based modeling toolkit and the ECJ evolutionary optimization library. Our system distributes the model calibration task over very many processors and provides a wide range of stochastic optimization algorithms well suited to the calibration needs of agent-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batty, M., Desyllas, J., Duxbury, E.: Safety in numbers? Modelling crowds and designing control for the notting hill carnival. Urban Stud. 40(8), 1573–1590 (2003)

    Article  Google Scholar 

  2. Canessa, E., Chaigneau, S.: Calibrating agent-based models using an improved genetic algorithm. In: International Conference of the Chilean Computer Science Society, pp. 25–29 (2014)

    Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  4. Gilbert, N., Troitzsch, K.: Simulation for the social scientist (2005)

    Google Scholar 

  5. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  6. Heppenstall, A., Malleson, N., Crooks, A.: “space, the final frontier”: how good are agent-based models at simulating individuals and space in cities? Systems 4(1), 9 (2016)

    Article  Google Scholar 

  7. Johnson, R.T., Lampe, T.A., Seichter, S.: Calibration of an agent-based simulation model depicting a refugee camp scenario. In: Winter Simulation Conference, pp. 1778–1786 (2009)

    Google Scholar 

  8. Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: a general purpose evolutionary computation library. In: Evolution Artificielle (EA), pp. 231–242 (2002)

    Google Scholar 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  10. Luke, S., et al.: The MASON simulation toolkit: past, present, and future. In: International Workshop on Multi-Agent-Based Simulation (MABS) (2018)

    Google Scholar 

  11. Luke, S., Spector, L.: Evolving teamwork and coordination with genetic programming. In: Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 141–149 (1996)

    Google Scholar 

  12. Mayer, D., Kinghorn, B., Archer, A.: Differential evolution-an easy and efficient evolutionary algorithm for model optimisation. Agric. Syst. 83(3), 315–328 (2005)

    Article  Google Scholar 

  13. Mongus, D., Repnik, B., Mernik, M., Žalik, B.: A hybrid evolutionary algorithm for tuning a cloth-simulation model. Appl. Soft Comput. 12(1), 266–273 (2012)

    Article  Google Scholar 

  14. Moya, I., Chica, M., Cordón, Ó.: A multicriteria integral framework for agent-based model calibration using evolutionary multi objective optimization and network-based visualization. Decis. Support Syst. 124, 113111 (2019)

    Article  Google Scholar 

  15. Nguyen, H.K., Chiong, R., Chica, M., Middleton, R.H., Dhakal, S.: Agent-based modeling of migration dynamics in the Mekong delta, Vietnam: automated calibration using a genetic algorithm. In: IEEE Congress on Evolutionary Computation (CEC), pp. 3372–3379. IEEE (2019)

    Google Scholar 

  16. Olsen, M.M., Laspesa, J., Taylor-D’Ambrosio, T.: On genetic algorithm effectiveness for finding behaviors in agent-based predator prey models. In: SummerSim, San Diego, CA, USA, pp. 15:1–15:12 (2018)

    Google Scholar 

  17. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. In: SIGGRAPH, pp. 25–34 (1987)

    Google Scholar 

  18. Rogers, A., von Tessin, P.: Multi-objective calibration for agent-based models (2004)

    Google Scholar 

  19. Rounds, E.L., Scott, E.O., Alexander, A.S., De Jong, K.A., Nitz, D.A., Krichmar, J.L.: An evolutionary framework for replicating neurophysiological data with spiking neural networks. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 537–547. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_50

    Chapter  Google Scholar 

  20. Scott, E., Luke, S.: ECJ at 20: toward a general metaheuristics toolkit. In: GECCO 2019 Companion (2019)

    Google Scholar 

  21. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks through neuroevolution. Nat. Mach. Intell. 1(1), 24–35 (2019)

    Article  Google Scholar 

  22. Stonedahl, F.J.: Genetic algorithms for the exploration of parameter spaces in agent-based models. Ph.D. thesis, Northwestern University (2011)

    Google Scholar 

  23. Venkadesh, S., et al.: Evolving simple models of diverse intrinsic dynamics in hippocampal neuron types. Front. Neuroinform. 12, 8 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo D’Auria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Auria, M., Scott, E.O., Lather, R.S., Hilty, J., Luke, S. (2020). Assisted Parameter and Behavior Calibration in Agent-Based Models with Distributed Optimization. In: Demazeau, Y., Holvoet, T., Corchado, J., Costantini, S. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. PAAMS 2020. Lecture Notes in Computer Science(), vol 12092. Springer, Cham. https://doi.org/10.1007/978-3-030-49778-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49778-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49777-4

  • Online ISBN: 978-3-030-49778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics