Skip to main content

Cosmetics and Cosmeceutical Applications of Microalgae Pigments

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

Microalgae are a class of unicellular photosynthetic microorganisms found in aquatic environments (both marine and freshwater). In the marine environment, marine microalgae are the largest primary producers. These organisms are considered among the fastest growing creature in the world and potential resources of new biomass in fuels as well as cosmetics industries. Among bioactive materials identified from marine microalgae, natural pigments have received particular attention and substantial progress has been made in past few decades. This chapter describes the potential applications of microalgal pigments in cosmetics and cosmeceuticals. First, growth characteristics of marine microalgae and the effects of culture conditions on microalgal growth rate are described. Second, development of marine microalgae pigments in cosmetics and cosmeceuticals as well as environmental friendly method to isolate pigments from microalgae are presented. Third, potential applications of microalgae pigments in cosmetics and cosmeceuticals are assessed based on their biological activities. Finally, the pros and cons of microalgal pigments in cosmetics are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, K., Hattori, H., & Hirano, M. (2007). Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chemistry, 100, 656–661.

    CAS  Google Scholar 

  • Balboa, E. M., Conde, E., Soto, M. L., Pérez-Armada, L., & Domínguez, H. (2015). Cosmetics from marine sources. In Springer handbook of marine biotechnology (pp. 1015–1042). Springer.

    Google Scholar 

  • Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., & Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Reviews in Food Science and Nutrition, 56, 2209–2222.

    CAS  PubMed  Google Scholar 

  • Belay, A. (2008). Spirulina (Arthrospira): Production and quality assurance. In Spirulina in human nutrition and health (Vol. 1).

    Google Scholar 

  • Bermejo, R., Talavera, E. M., & Alvarez-Pez, J. M. (2000). C-phycocyanin incorporated into reverse micelles: A fluorescence study. Colloids and Surfaces B: Biointerfaces, 18, 51–59.

    CAS  Google Scholar 

  • Bhalamurugan, G. L., Valerie, O., & Mark, L. (2018). Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research, 23, 229–241.

    Google Scholar 

  • Biba, E. (2014). The sunscreen pill. Nature, 515, S124.

    PubMed  Google Scholar 

  • Blackburn, S., & Parker, N. (2005). Microalgal life cycles: Encystment and excystment. In Algal culturing techniques (pp. 399–417).

    Google Scholar 

  • Blackburn, S. I., & Volkman, J. K. (2012). Microalgae: A renewable source of bioproducts (pp. 221–241). Wiley Online Library.

    Google Scholar 

  • Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, and fermenters. In Progress in industrial microbiology (Vol. 35, pp. 313–321). Elsevier.

    Google Scholar 

  • Bule, M. H., Ahmed, I., Maqbool, F., Bilal, M., & Iqbal, H. M. (2018). Microalgae as a source of high-value bioactive compounds. Frontiers in Bioscience (Scholar Edition), 10, 197–216.

    Google Scholar 

  • Chakdar, H., & Pabbi, S. (2017). Algal pigments for human health and cosmeceuticals. In Algal green chemistry (pp. 171–188). Elsevier.

    Google Scholar 

  • Charlier, R. H., & Chaineux, M.-C. P. (2009). The healing sea: A sustainable coastal ocean resource: Thalassotherapy. Journal of Coastal Research 838–856.

    Google Scholar 

  • Cherian, J., & Jacob, J. (2012). Green marketing: A study of consumers’ attitude towards environment friendly products. Asían Social Science, 8, 117.

    Google Scholar 

  • Davinelli, S., Nielsen, M., & Scapagnini, G. (2018). Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients, 10, 522.

    PubMed Central  Google Scholar 

  • de Jesus Raposo, M. F., de Morais, R. M. S. C., & de Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93, 479–486.

    PubMed  Google Scholar 

  • Delgado-Vargas, F., & Paredes-Lopez, O. (2002). Natural colorants for food and nutraceutical uses. CRC Press.

    Google Scholar 

  • Eales, L. (1978). The effects of canthaxanthin on the photocutaneous manifestations of porphyria. South African Medical Journal, 54, 1050–1052.

    CAS  PubMed  Google Scholar 

  • Garone, M., Howard, J., & Fabrikant, J. (2015). A review of common tanning methods. The Journal of Clinical and Aesthetic Dermatology, 8, 43.

    PubMed  PubMed Central  Google Scholar 

  • Gierhart, D. L., & Fox, J. A. (2013). Protection against sunburn and skin problems with orally-ingested high-dosage zeaxanthin. Google Patents.

    Google Scholar 

  • Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34, 1396–1412.

    CAS  PubMed  Google Scholar 

  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36, 269–274.

    CAS  PubMed  Google Scholar 

  • Gouveia, L., Nobre, B., Marcelo, F., Mrejen, S., Cardoso, M., Palavra, A., et al. (2007). Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chemistry, 101, 717–723.

    CAS  Google Scholar 

  • Grifoni, D., Bacci, L., Zipoli, G., Carreras, G., Baronti, S., & Sabatini, F. (2009). Laboratory and outdoor assessment of UV protection offered by flax and hemp fabrics dyed with natural dyes. Photochemistry and Photobiology, 85, 313–320.

    CAS  PubMed  Google Scholar 

  • Guedes, A. C., Gião, M. S., Matias, A. A., Nunes, A. V., Pintado, M. E., Duarte, C. M., et al. (2013). Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus obliquus for use in food processing. Journal of Food Engineering, 116, 478–482.

    CAS  Google Scholar 

  • Guerin, M., Huntley, M. E., & Olaizola, M. (2003). Haematococcus astaxanthin: Applications for human health and nutrition. Trends in Biotechnology, 21, 210–216.

    CAS  PubMed  Google Scholar 

  • Guillerme, J.-B., Couteau, C., & Coiffard, L. (2017). Applications for marine resources in cosmetics. Cosmetics, 4, 35.

    Google Scholar 

  • Gupta, A. K., Haberman, H. F., Pawlowski, D., Shulman, G., & Menon, I. A. (1985). Canthaxanthin. International Journal of Dermatology, 24, 528–532.

    CAS  PubMed  Google Scholar 

  • Hamed, I. (2016). The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety, 15, 1104–1123.

    Google Scholar 

  • Hearing, V. J., & Jimenez, M. (1987). Mammalian tyrosinase-The critical regulatory control point in melanocyte pigmentation. International Journal of Biochemistry, 19, 1141–1147.

    Google Scholar 

  • Henrikson, R. (1989). Earth food spirulina (Vol. 187). Laguna Beach, CA: Ronore Enterprises, Inc.

    Google Scholar 

  • Heo, S.-J., Ko, S.-C., Kang, S.-M., Kang, H.-S., Kim, J.-P., Kim, S.-H., et al. (2008). Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. European Food Research and Technology, 228, 145–151.

    CAS  Google Scholar 

  • Hosikian, A., Lim, S., Halim, R., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering.

    Google Scholar 

  • Huangfu, J., Liu, J., Sun, Z., Wang, M., Jiang, Y., Chen, Z.-Y., et al. (2013). Antiaging effects of astaxanthin-rich alga Haematococcus pluvialis on fruit flies under oxidative stress. Journal of Agricultural and Food Chemistry, 61, 7800–7804.

    CAS  PubMed  Google Scholar 

  • Hulisz, D. T., & Boles, G. L. (1993). Clinical review of canthaxanthin (6Tanning Pills’): Before recommending this product for tanning long-term safety must be established. American Pharmacy, 33, 44–46.

    Google Scholar 

  • Humphrey, A. (2004). Chlorophyll as a color and functional ingredient. Journal of Food Science, 69, C422–C425.

    CAS  Google Scholar 

  • Joshi, S., Kumari, R., & Upasani, V. N. (2018). Applications of algae in cosmetics: An overview. International Journal of Innovative Research in Science, Engineering and Technology, 7, 1269–1278.

    Google Scholar 

  • Juin, C., Chérouvrier, J.-R., Thiéry, V., Gagez, A.-L., Bérard, J.-B., Joguet, N., et al. (2015). Microwave-assisted extraction of phycobiliproteins from Porphyridium purpureum. Applied Biochemistry and Biotechnology, 175, 1–15.

    CAS  PubMed  Google Scholar 

  • Kalla, A. (2007). Human skin colour, its genetics, variation and adaptation: A review. Anthropologist Special, 3, 209–214.

    Google Scholar 

  • Katiyar, S., Elmets, C. A., & Katiyar, S. K. (2007). Green tea and skin cancer: Photoimmunology, angiogenesis and DNA repair. The Journal of Nutritional Biochemistry, 18, 287–296.

    CAS  PubMed  Google Scholar 

  • Kim, H. M., Jung, J. H., Kim, J. Y., Heo, J., Cho, D. H., Kim, H. S., et al. (2018). The protective effect of violaxanthin from Nannochloropsis oceanica against ultraviolet B‐induced damage in normal human dermal fibroblasts. Photochemistry and Photobiology.

    Google Scholar 

  • Kim, S.-K., & Pangestuti, R. (2011). Potential role of marine algae on female health, beauty, and longevity. In Advances in food and nutrition research (Vol. 64, pp. 41–55). Elsevier.

    Google Scholar 

  • Kitada, K., Machmudah, S., Sasaki, M., Goto, M., Nakashima, Y., Kumamoto, S., et al. (2009). Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84, 657–661.

    CAS  Google Scholar 

  • Komatsu, T., Sasaki, S., Manabe, Y., Hirata, T., & Sugawara, T. (2017). Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS One, 12, e0171178.

    PubMed  PubMed Central  Google Scholar 

  • Krichnavaruk, S., Shotipruk, A., Goto, M., & Pavasant, P. (2008). Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. Bioresource Technology, 99, 5556–5560.

    CAS  PubMed  Google Scholar 

  • Kuddus, M., Singh, P., Thomas, G., & Ali, A. (2015). Production of c-phycocyanin and its potential applications. In V. K. Gupta, M. G. Tuohy, M. Lohani, & A. O’Donovan (Eds.), Biotechnology of bioactive compounds: Sources and applications (pp. 283–299). Wiley-Blackwell Ltd.

    Google Scholar 

  • Lee, E. H., Faulhaber, D., Hanson, K. M., Ding, W., Peters, S., Kodali, S., et al. (2004). Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression. Journal of Investigative Dermatology, 122, 510–517.

    CAS  PubMed  Google Scholar 

  • Legido, J., Mourelle, L., Torres, J., Martín, M., Fernández, C., & Gómez, C. (2013). Caracterización termofísica de mezclas de arcilla, aguas mineromedicinales y microalgas. In Proceedings of the 3rd Iberoamerican Congress of Peloids, Sao Miguel, Azores, Portugal (pp. 1–7).

    Google Scholar 

  • Lephart, E. D. (2016). Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Research Reviews, 31, 36–54.

    CAS  PubMed  Google Scholar 

  • Li, H. B., Fan, K. W., & Chen, F. (2006). Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. Journal of Separation Science, 29, 699–703.

    Google Scholar 

  • Lober, C. W. (1985). Canthaxanthin—The “tanning” pill. Journal of the American Academy of Dermatology, 13, 660.

    CAS  PubMed  Google Scholar 

  • Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Marine Drugs, 9, 1056–1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubián, L. M., Montero, O., Moreno-Garrido, I., Huertas, I. E., Sobrino, C., González-del Valle, M., et al. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 12, 249–255.

    Google Scholar 

  • Macıas-Sánchez, M., Mantell, C., Rodrıguez, M., de La Ossa, E. M., Lubián, L., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66, 245–251.

    Google Scholar 

  • Macías-Sánchez, M., Fernandez-Sevilla, J., Fernández, F. A., García, M. C., & Grima, E. M. (2010). Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chemistry, 123, 928–935.

    Google Scholar 

  • Macías-Sánchez, M., Mantell, C., Rodriguez, M., de la Ossa, E. M., Lubián, L., & Montero, O. (2009). Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta, 77, 948–952.

    PubMed  Google Scholar 

  • Macías-Sánchez, M. D., Mantell, C., Rodríguez, M., de la Ossa, E. M., Lubián, L., & Montero, O. (2007). Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp. The Journal of Supercritical Fluids, 39, 323–329.

    Google Scholar 

  • Macías-Sánchez, M. D., Mantell Serrano, C., Rodríguez Rodríguez, M., Martínez de la Ossa, E., Lubián, L. M., & Montero, O. (2008). Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. Journal of Separation Science, 31, 1352–1362.

    PubMed  Google Scholar 

  • Mäki‐Arvela, P., Hachemi, I., & Murzin, D. Y. (2014). Comparative study of the extraction methods for recovery of carotenoids from algae: extraction kinetics and effect of different extraction parameters. Journal of chemical technology and biotechnology, 89, 1607–1626.

    Google Scholar 

  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.

    CAS  Google Scholar 

  • Matsui, M., Tanaka, K., Higashiguchi, N., Okawa, H., Yamada, Y., Tanaka, K., et al. (2016). Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation. Journal of Pharmacological Sciences, 132, 55–64.

    CAS  PubMed  Google Scholar 

  • Matsukawa, R., Dubinsky, Zvy, D., Masaki, K., Takeuchi, T., & Karube, I. (1997). Enzymatic screening of microalgae as a potential source of natural antioxidants. Applied Biochemistry and Biotechnology, 66, 239–247.

    Google Scholar 

  • Mourelle, M., Gómez, C., & Legido, J. (2017). The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4, 46.

    Google Scholar 

  • Mulders, K. J., Lamers, P. P., Martens, D. E., & Wijffels, R. H. (2014). Phototrophic pigment production with microalgae: Biological constraints and opportunities. Journal of Phycology, 50, 229–242.

    CAS  PubMed  Google Scholar 

  • Noaman, N. H., Fattah, A., Khaleafa, M., & Zaky, S. H. (2004). Factors affecting antimicrobial activity of Synechococcus leopoliensis. Microbiological Research, 159, 395–402.

    CAS  PubMed  Google Scholar 

  • Nobre, B., Marcelo, F., Passos, R., Beirão, L., Palavra, A., Gouveia, L., et al. (2006). Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology, 223, 787–790.

    CAS  Google Scholar 

  • O’Leary, R. E., Diehl, J., & Levins, P. C. (2014). Update on tanning: More risks, fewer benefits. Journal of the American Academy of Dermatology, 70, 562–568.

    PubMed  Google Scholar 

  • Palombo, P., Fabrizi, G., Ruocco, V., Ruocco, E., Fluhr, J., Roberts, R., et al. (2007). Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: A double-blind, placebo-controlled study. Skin Pharmacology and Physiology, 20, 199–210.

    CAS  PubMed  Google Scholar 

  • Pangestuti, R., & Kim, S.-K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods, 3, 255–266.

    CAS  Google Scholar 

  • Pangestuti, R., & Kim, S.-K. (2017). Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Marine Drugs, 15, 1–23.

    Google Scholar 

  • Pangestuti, R., & Arifin, Z. (2017). Medicinal and health benefit effects of functional sea cucumbers. Journal of Traditional and Complementary Medicine.

    Google Scholar 

  • Pangestuti, R., Siahaan, E., & Kim, S.-K. (2018). Photoprotective substances derived from marine algae. Marine Drugs, 16, 399.

    CAS  PubMed Central  Google Scholar 

  • Parniakov, O., Apicella, E., Koubaa, M., Barba, F., Grimi, N., Lebovka, N., et al. (2015). Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis spp. Bioresource Technology, 198, 262–267.

    CAS  PubMed  Google Scholar 

  • Pasquet, V., Chérouvrier, J.-R., Farhat, F., Thiéry, V., Piot, J.-M., Bérard, J.-B., et al. (2011). Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46, 59–67.

    CAS  Google Scholar 

  • Patil, N. N., & Datar, A. G. (2016). Applications of natural dye from Ixora coccinea L. in the field of textiles and cosmetics. Coloration Technology, 132, 98–103.

    CAS  Google Scholar 

  • Pereira, L. (2018). Seaweeds as source of bioactive substances and skin care therapy—Cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics, 5, 68.

    CAS  Google Scholar 

  • Pérez-Sánchez, A., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2018). Nutraceuticals for skin care: A comprehensive review of human clinical studies. Nutrients, 10, 403.

    PubMed Central  Google Scholar 

  • Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae—A review. Journal of Algal Biomass Utilization, 3, 89–100.

    Google Scholar 

  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.

    CAS  PubMed  Google Scholar 

  • Rao, A. R., Sindhuja,H. N., Dharmesh, S. M., Sankar, K. U., Sarada,R., & Ravishankar, G. A. (2013). Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry, 61, 3842−3851.

    Google Scholar 

  • Raposo, M., de Morais, A., & de Morais, R. (2015). Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Marine Drugs, 13, 5128–5155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.

    CAS  Google Scholar 

  • Rinnerthaler, M., Bischof, J., Streubel, M., Trost, A., & Richter, K. (2015). Oxidative stress in aging human skin. Biomolecules, 5, 545–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo, R. F., do Nascimento Corrêia dos Santos, B., da Silva de Castro, G. F. P., Passos, T. S., de Abreu Nascimento, M., Guerra, H. D., et al. (2015). Production of phycobiliproteins by Arthrospira platensis under different lightconditions for application in food products. Food Science and Technology, 35, 247–252.

    Google Scholar 

  • Rymbai, H., Sharma, R., & Srivastav, M. (2011). Bio-colorants and its implications in health and food industry–a review. International Journal of PharmTech Research, 3, 2228–2244.

    CAS  Google Scholar 

  • Ryu, B., Himaya, S., & Kim, S.-K. (2015). Applications of microalgae-derived active ingredients as cosmeceuticals. In Handbook of marine microalgae (pp. 309–316). Elsevier.

    Google Scholar 

  • Saad, A., & Atia, A. (2014). Review on freshwater blue-green algae (Cyanobacteria): Occurrence, classification and toxicology. Biosciences, Biotechnology Research Asia, 11, 1319–1325.

    Google Scholar 

  • Sathasivam, R., & Ki, J.-S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs, 16, 26.

    PubMed Central  Google Scholar 

  • Shen, C. T., Chen, P. Y., Wua, J. J., Lee, T. S., Hsue, S. L., Chang, C. M. J., Young, C. C., & Shieh, C. J. (2011). Purification of algal anti-tyrosinase zeaxanthin from Nannochloropsis oculata using supercritical anti-solvent precipitation. The Journal of Supercritical Fluids, 55, 955–962.

    Google Scholar 

  • Shimoda, H., Tanaka, J., Shan, S. J., & Maoka, T. (2010). Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. Journal of Pharmacy and Pharmacology, 62, 1137–1145.

    CAS  PubMed  Google Scholar 

  • Siahaan, E. A., Pangestuti, R., Munandar, H., & Kim, S.-K. (2017). Cosmeceuticals properties of sea cucumbers: Prospects and trends. Cosmetics, 4, 26.

    Google Scholar 

  • Singh, J., Tiwari, O. N., & Dhar, D. W. (2019). Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art. Frontiers in Marine Science, 6, 29.

    Google Scholar 

  • Spears, K. (1988). Developments in food colourings: The natural alternatives. Trends in Biotechnology, 6, 283–288.

    CAS  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    CAS  PubMed  Google Scholar 

  • Suhonen, R., & Plosila, M. (1981). The effect of beta-carotene in combination with canthaxanthin, Ro 8–8427 (Phenoro®), in treatment of polymorphous light eruptions. Dermatology, 163, 172–176.

    CAS  Google Scholar 

  • Tominaga, K., Hongo, N., Karato, M., & Yamashita, E. (2012). Cosmetic benefits of astaxanthin on humans subjects. Acta Biochimica Polonica, 59.

    Google Scholar 

  • Valderrama, J. O., Perrut, M., & Majewski, W. (2003). Extraction of astaxantine and phycocyanine from microalgae with supercritical carbon dioxide. Journal of Chemical and Engineering Data, 48, 827–830.

    CAS  Google Scholar 

  • Venkatesan, J., Manivasagan, P., & Kim, S.-K. (2015). Marine microalgae biotechnology: Present trends and future advances. In Handbook of marine microalgae (pp. 1–9). Elsevier.

    Google Scholar 

  • Viera, I., Pérez-Gálvez, A., & Roca, M. (2019). Green Natural Colorants. Molecules, 24, 154.

    PubMed Central  Google Scholar 

  • Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718.

    CAS  PubMed  Google Scholar 

  • Wang, C. M., Huang, C. L., Sindy, H. C. T., & Chan, H. L. (1997). The effect of glycolic acid on the treatment of acne in Asian skin. Dermatologic Surgery, 23, 23–29.

    CAS  PubMed  Google Scholar 

  • Wang, H. M. D., Chen, C.-c., Huynh, P., & Chang, J.-S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362.

    CAS  PubMed  Google Scholar 

  • Webb, A. R., & Engelsen, O. (2006). Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochemistry and Photobiology, 82, 1697–1703.

    CAS  PubMed  Google Scholar 

  • William, P., & Laurens, L. (2010). Microalgae as biodiesel and biomass feedstock: Review and analysis of the biochemistry, energetic and economics. Energy & Environmental Science, 3, 554–590.

    Google Scholar 

  • Wu, Z., Wu, S., & Shi, X. (2007). Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa. Journal of Food Process Engineering, 30, 174–185.

    Google Scholar 

  • Yasmine, A. N., Sarra, D. H., Fatma, M., Chawki, L. S.-A., Bey, B. H. M., & El-Amine, A.-A.-M. (2017). Cultivation of marine microalga Nannochloropsis gaditana under various temperatures and nitrogen treatments: Effect on growth, lipid and pigment content. International Journal of Biosciences, 10, 209–216.

    CAS  Google Scholar 

  • Zuluaga, M., Gueguen, V., Pavon-Djavid, G., & Letourneur, D. (2017). Carotenoids from microalgae to block oxidative stress. BioImpacts: BI, 7(1).

    Google Scholar 

Download references

Acknowledgments

This study is supported by Thematic Research Program Research Center for Oceanography, Indonesian Institute of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pangestuti, R., Suryaningtyas, I.T., Siahaan, E.A., Kim, SK. (2020). Cosmetics and Cosmeceutical Applications of Microalgae Pigments. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_25

Download citation

Publish with us

Policies and ethics