Skip to main content

Machine Learning Approaches and Neuroimaging in Cognitive Functions of the Human Brain: A Review

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2020)

Abstract

Brain science is that sphere of knowledge on the frontline of modern reality wherefrom the accuracy of diagnoses and speed of decision making depends on human mental health. Machine Learning and Deep Learning are the contemporary methodologies and algorithms that can combine a huge amount of complex data in the coherent structure and help scientists solve brain disorders. This paper reviews different Machine Learning algorithms that investigate data patterns and trends, collected from the human brain using several neuroimaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, F., Jiang, Y., Zhi, H., Dong, Yi., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., Wang, Y.: Artificial intelligence in healthcare: past, present, and future. Stroke Vasc. Neurol. 2(4), 230–243 (2017)

    Google Scholar 

  2. Zhu, G., Jiang, B., Tong, L., Xie, Y., Zaharchuk, G., Wintermark, M.: Applications of deep learning to neuro-imaging techniques. Frontiers Neurol. 10, 869 (2019)

    Article  Google Scholar 

  3. McCarthy, J.: What is Artificial Intelligence? (2017). http://jmc.stanford.edu/articles/whatisai/whatisai.pdf

  4. Mazurowski, M.A., Buda, M., Saha, A., Bashir, M.R.: Deep learning in radiology: an overview of the concepts and a survey of the state of the art. J. Mag. Reson. Imaging 49(4), 1–27 (2018)

    Google Scholar 

  5. Kamal, H., Lopez, V., Sheth, S.A.: Machine learning in acute ischemic stroke neuroimaging. Frontiers Neurol. 9, 945 (2018)

    Article  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  7. Rehme, A.K., Volz, L.J., Feis, D.L., Bomilcar-Focke, I., Liebig, T., Eickhoff, S.B., Fink, G.R., Grefkes, C.: Identifying neuroimaging markers of motor disability in acute stroke by machine learning techniques. Cereb. Cortex 25, 3046–3056 (2015)

    Article  Google Scholar 

  8. Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K.O., Burkhard, P.R.: Individual detection of patients with parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. Am. J. Neuroradiol. 33(11), 2123–2128 (2012)

    Article  Google Scholar 

  9. Li, R., Rui, G., Chen, W., Li, S., Schulz, P.E., Zhang, Y.: Early detection of Alzheimer’s disease using non-invasive near-infrared spectroscopy. Frontiers Aging Neurosci. 10, 366 (2018)

    Article  Google Scholar 

  10. Quaresima, V., Ferrari, M.: A mini-review on functional near-infrared spectroscopy (fNIRS): where do we stand, and where should we go? Photonics 6(3), 87 (2019)

    Article  Google Scholar 

  11. Bunce, S., Izzetoglu, K., Izzetoglu, M., Onaral, K., Banu, O., Kambiz, P.: Functional near-infrared spectroscopy. IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006)

    Article  Google Scholar 

  12. Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2(1–2), 56–78 (1994)

    Article  Google Scholar 

  13. Rojas, R.F., Huang, X., Ou, K.L.: A machine learning approach for the identification of a biomarker of human pain using fNIRS. Sci. Rep. 9(1), 5645 (2019)

    Article  Google Scholar 

  14. Karamzadeh, N., Amyot, F., Kenney, K., Anderson, A., Chowdhry, F., Dashtestani, H., Wassermann, E.M., Chernomordik, V., Boccara, C., Wegman, E., Diaz-Arrastia, R., Gandjbakhche, A.H.: A machine learning approach to identify functional biomarkers in the human prefrontal cortex for individuals with traumatic brain injury using functional near-infrared spectroscopy. Brain Behav. 6(11), 1–14 (2016)

    Article  Google Scholar 

  15. Lopez-Martinez, D., Peng, K., Lee, A., Borsook, D., Picard, R.: Pain detection with fNIRS-measured brain signals: a personalized machine learning approach using the wavelet transform and bayesian hierarchical modeling with dirichlet process priors. In: 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (2019)

    Google Scholar 

  16. Ho, T.K.K., Gwak, J., Park, C.M., Song, J.I.: Discrimination of mental workload levels from multi-channel fNIRS using deep learning-based approaches. IEEE Access 7, 24392–24403 (2019)

    Article  Google Scholar 

  17. Hiwa, S., Hanawa, K., Tamura, R., Hachisuka, K., Hiroyasu1, T.: Analyzing brain functions by subject classification of functional near-infrared spectroscopy data using convolutional neural networks analysis. Comput. Intell. Neurosci. 2016, 1–9 (2016)

    Google Scholar 

  18. Benerradi, J., Maior, H.A., Marinescu, A., Clos, J., Wilson, M.L.: Exploring machine learning approaches for classifying mental workload using fNIRS data from HCI tasks. In: Proceedings of the Halfway to the Future Symposium. ACM (2019)

    Google Scholar 

  19. Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., Choi, J.W.: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution. Neurophotonics 5(1), 011008-1–15 (2017)

    Google Scholar 

  20. Dashtestani, H., Zaragoza, R., Kermanian, R., Knutson, K.M., Halem, M., Casey, A., Karamzadeh, N.S., Anderson, A.A., Boccara, A.C., Gandjbakhche, A.: The role of prefrontal cortex in a moral judgment task using functional near-infrared spectroscopy. Brain Behav. 8, 1–10 (2018)

    Article  Google Scholar 

  21. Venu1, S.K., Sadeghian, R., Sardari, S.E., Dashtestani, H., Gandjbakhche, A., Aram, S.: Neural correlates of brain activities in gaming using functional near-infrared spectroscopy and Iowa gambling task. In: Abstracts of 11th International Conference on Physical Ergonomics and Human Factors (2019)

    Google Scholar 

  22. Sarraf, S., Tofighi, G.: Deep Learning-Based Pipeline To Recognize Alzheimer’s disease using fMRI data. In: Future Technologies Conference, pp. 1–5 (2016)

    Google Scholar 

  23. Thomas, A.W., Heekeren, H.R., Müller, K.R., Samek, W.: Interpretable LSTMs for whole-brain neuroimaging analyses, pp. 1–26 (2018)

    Google Scholar 

  24. Fong, R.C., Scheirer, W.J., Cox, D.D.: Using human brain activity to guide machine learning. Sci. Rep. 8(5397), 1–10 (2018)

    Google Scholar 

  25. Jeong, J.H., Yu, B.W., Lee, D.H., Lee, S.W.: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals. Brain Sci. 9(348), 1–18 (2019)

    Google Scholar 

  26. Al Zoubi, O., Ki Wong, C., Kuplicki, R.T., Yeh, H.W., Mayeli, A., Refai, H., Paulus, M., Bodurka, J.: Predicting age from brain EEG signals-a machine learning approach. Frontiers Aging Neurosci. 10(184), 1–12 (2018)

    Google Scholar 

  27. Mumtaza, W., Xiad, L., AzharAlia, S.S., Mohd Yasinb, M.A., Hussainc, M., Malika, A.S.: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomed. Signal Process. Control 31, 108–115 (2017)

    Article  Google Scholar 

  28. Saadati, M., Nelson, J., Ayaz, H.: Multimodal fNIRS-EEG classification using deep learning algorithms for brain-computer interfaces purposes. In: Advances in Intelligent Systems and Computing, pp. 209–220 (2019)

    Google Scholar 

  29. Shin, J., Kwon, J., Im, C.H.: A ternary hybrid EEG-NIRS brain-computer interface for the classification of brain activation patterns during mental arithmetic, motor imagery, and idle state. Frontiers Neuroinf. 12(5), 1–9 (2018)

    Google Scholar 

  30. Sirpal, P., Kassab, A., Pouliot, P., Nguyen, D.K., Lesage, F.: fNIRS improves seizure detection in multimodal EEG-fNIRS recordings. J. Biomed. Opt. 24(5), 1–9 (2019)

    Article  Google Scholar 

  31. Dargazany, A.R., Abtahi, M., Mankodiya, K.: An end-to-end (Deep) neural network applied to raw EEG, fNIRS, and body motion data for data fusion and BCI classification task without any pre-/post-processing, pp. 1–6 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Aram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aram, S. et al. (2021). Machine Learning Approaches and Neuroimaging in Cognitive Functions of the Human Brain: A Review. In: Ayaz, H., Asgher, U. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-51041-1_4

Download citation

Publish with us

Policies and ethics