Skip to main content

3D Characterization of the Columnar-to-Equiaxed Transition in Additively Manufactured Inconel 718

  • Conference paper
  • First Online:
Superalloys 2020

Abstract

Additive manufacturing (AM) provides enormous processing flexibility, enabling novel part geometries and optimized designs. Access to a local heat source further permits the potential for local microstructure control on the scale of individual melt pools, which can enable local control of part properties. In order to design tailored processing strategies for target microstructures, models predicting the columnar-to-equiaxed transition must be extended to the high solidification velocities and complex thermal histories present in AM. Here, we combine 3D characterization with advanced modeling techniques to develop a more complete understanding of the solidification process and evolution of microstructure during electron beam melting (EBM) of Inconel 718. Full calibration of existing microstructure prediction models demonstrates the differences between AM processes and more conventional welding techniques, underlying the need for accurate determination of key parameters that can only be measured directly in 3D. The ability to combine multisensor data in a consistent 3D framework via data fusion algorithms is essential to fully leverage these advanced characterization approaches. Thermal modeling provides insight on microstructure development within isolated solidification events and demonstrates the role of Marangoni effects on controlling solidification behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Simonelli, Y.Y. Tse, and C. Tuck. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti6Al4V. Materials Science and Engineering: A, 616:1–11, oct 2014.

    Article  CAS  Google Scholar 

  2. Wen Shifeng, Li Shuai, Wei Qingsong, Chunze Yan, Zhang Sheng, and Shi Yusheng. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. Journal of Materials Processing Technology, 214(11):2660–2667, nov 2014.

    Article  CAS  Google Scholar 

  3. Pavel Hanzl, Miroslav Zetek, Tomáš Bakša, and Tomáš Kroupa. The Influence of Processing Parameters on the Mechanical Properties of SLM Parts. Procedia Engineering, 100(January):1405–1413, 2015.

    Article  Google Scholar 

  4. Luke N. Carter, Christopher Martin, Philip J. Withers, and Moataz M. Attallah. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. Journal of Alloys and Compounds, 615:338–347, dec 2014.

    Article  CAS  Google Scholar 

  5. P. Ganesh, R. Kaul, C.P. Paul, Pragya Tiwari, S.K. Rai, R.C. Prasad, and L.M. Kukreja. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures. Materials Science and Engineering: A, 527(29-30):7490–7497, nov 2010.

    Google Scholar 

  6. A.A. Antonysamy, J. Meyer, and P.B. Prangnell. Effect of build geometry on the \(\beta \)-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Materials Characterization, 84:153–168, oct 2013.

    Article  CAS  Google Scholar 

  7. Harald Ernst Helmer, Carolin Körner, and Robert Friedrich Singer. Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure. Journal of Materials Research, 29(17):1987–1996, sep 2014.

    Google Scholar 

  8. Xibing Gong, Ted Anderson, and Kevin Chou. Review on powder-based electron beam additive manufacturing technology. Manufacturing Review, 1:2, apr 2014.

    Article  Google Scholar 

  9. M. M. Kirka, K. A. Unocic, N. Raghavan, F. Medina, R. R. Dehoff, and S. S. Babu. Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties. JOM, 68(3):1012–1020, mar 2016.

    Article  CAS  Google Scholar 

  10. Carolin Körner, Harald Helmer, Andreas Bauereiß, and Robert F. Singer. Tailoring the grain structure of IN718 during selective electron beam melting. MATEC Web of Conferences, 14:08001, aug 2014.

    Article  Google Scholar 

  11. Lakshmi L. Parimi, Ravi G. A., Daniel Clark, and Moataz M. Attallah. Microstructural and texture development in direct laser fabricated IN718. Materials Characterization, 89:102–111, mar 2014.

    Google Scholar 

  12. R. R. Dehoff, M. M. Kirka, F. A. List, K. A. Unocic, and W. J. Sames. Crystallographic texture engineering through novel melt strategies via electron beam melting: Inconel 718. Materials Science and Technology, 31(8):939–944, jun 2015.

    Google Scholar 

  13. R. R. Dehoff, M. M. Kirka, W. J. Sames, H. Bilheux, A. S. Tremsin, L. E. Lowe, and S. S. Babu. Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Materials Science and Technology, 31(8):931–938, jun 2015.

    Google Scholar 

  14. Colt Montgomery, Jack Beuth, Luke Sheridan, and Nathan Klingbeil. Process Mapping of Inconel 625 in Laser Powder Bed Additive Manufacturing. Solid Freeform Fabrication Symposium, pages 1195–1204, 2015.

    Google Scholar 

  15. Saad A. Khairallah, Andrew T. Anderson, Alexander Rubenchik, and Wayne E. King. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia, 108:36–45, apr 2016.

    Article  CAS  Google Scholar 

  16. Manyalibo J. Matthews, Gabe Guss, Saad A. Khairallah, Alexander M. Rubenchik, Philip J. Depond, and Wayne E. King. Denudation of metal powder layers in laser powder bed fusion processes. Acta Materialia, 114:33–42, aug 2016.

    Article  CAS  Google Scholar 

  17. Saad A. Khairallah and Andy Anderson. Mesoscopic simulation model of selective laser melting of stainless steel powder. Journal of Materials Processing Technology, 214(11):2627–2636, 2014.

    Article  CAS  Google Scholar 

  18. Narendran Raghavan, Ryan Dehoff, Sreekanth Pannala, Srdjan Simunovic, Michael Kirka, John Turner, Neil Carlson, and Sudarsanam S. Babu. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Materialia, 112:303–314, jun 2016.

    Google Scholar 

  19. J. D. Hunt. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic. Materials Science and Engineering, 65:75–83, 1984.

    Article  CAS  Google Scholar 

  20. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz. Single-crystal laser deposition of superalloys: processingmicrostructure maps. Acta Materialia, 49(6):1051–1062, apr 2001.

    Article  Google Scholar 

  21. Nickel Alloy, Corrosion and Heat Resistant, Bars, Forgings, and Rings 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe, Consumable Electrode or Vacuum Induction Melted 1775F (968C) Solution Heat Treated, Precipitation Hardenable, sep 1965.

    Google Scholar 

  22. Andrew T. Polonsky, McLean P. Echlin, William C. Lenthe, Ryan R. Dehoff, Michael M. Kirka, and Tresa M. Pollock. Defects and 3D structural inhomogeneity in electron beam additively manufactured Inconel 718. Materials Characterization, 143(January):171–181, sep 2018.

    Google Scholar 

  23. McLean P. Echlin, Marcus Straw, Steven Randolph, Jorge Filevich, and Tresa M. Pollock. The TriBeam system: Femtosecond laser ablation in situ SEM. Materials Characterization, 100:1–12, feb 2015.

    Article  CAS  Google Scholar 

  24. McLean P. Echlin, Alessandro Mottura, Christopher J. Torbet, and Tresa M. Pollock. A new TriBeam system for three-dimensional multimodal materials analysis. Review of Scientific Instruments, 83(2):023701, feb 2012.

    Article  Google Scholar 

  25. C. Harris and M. Stephens. A Combined Corner and Edge Detector. In Procedings of the Alvey Vision Conference 1988, pages 23.1–23.6. Alvey Vision Club, 1988.

    Google Scholar 

  26. D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, volume 482, pages 1150–1157 vol.2. IEEE, sep 1999.

    Google Scholar 

  27. Martin Urschler, Joachim Bauer, Hendrik Ditt, and Horst Bischof. SIFT and Shape Context for Feature-Based Nonlinear Registration of Thoracic CT Images. In R.R. Beichel and M. Sonka, editors, Lecture Notes in Computer Science, volume 4241 LNCS, pages 73–84. Springer, Berlin, Heidelberg, 2006.

    Google Scholar 

  28. Andrew Deal, David Rowenhorst, Brandon Laflen, Ian Spinelli, Tony Barbuto, Yuchi Huang, and Timothy Hanlon. Proceedings of the 1st International Conference on 3D Materials Science. Springer International Publishing, Cham, 2016.

    Google Scholar 

  29. Marie-Agathe Charpagne, Florian Strub, and Tresa M. Pollock. Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm. Materials Characterization, 150:184–198, apr 2019.

    Article  CAS  Google Scholar 

  30. Y.B. Zhang, A. Elbrønd, and F.X. Lin. A method to correct coordinate distortion in EBSD maps. Materials Characterization, 96:158–165, oct 2014.

    Article  CAS  Google Scholar 

  31. F.L. Bookstein. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, jun 1989.

    Google Scholar 

  32. Michael A Groeber and Michael A Jackson. DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integrating Materials and Manufacturing Innovation, 3(1):56–72, dec 2014.

    Google Scholar 

  33. Stuart I Wright and Matthew M Nowell. EBSD Image Quality Mapping. Microscopy and Microanalysis, 12(01):72–84, feb 2006.

    Google Scholar 

  34. Andrew T. Polonsky, Christian A. Lang, Kristian G. Kvilekval, Marat I. Latypov, McLean P. Echlin, B. S. Manjunath, and Tresa M. Pollock. Three-dimensional Analysis and Reconstruction of Additively Manufactured Materials in the Cloud-Based BisQue Infrastructure. Integrating Materials and Manufacturing Innovation, 8(1):37–51, mar 2019.

    Google Scholar 

  35. D. A. Korzekwa. Truchas a multi-physics tool for casting simulation. International Journal of Cast Metals Research, 22(1-4):187–191, aug 2009.

    Article  CAS  Google Scholar 

  36. P. D. Lee, P. N. Quested, and M. McLean. Modelling of Marangoni effects in electron beam melting. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1739):1027–1043, apr 1998.

    Google Scholar 

  37. J.A. Dantzig and M. Rappaz. Solidifcation. EPFL Press, first edit edition, 2009.

    Google Scholar 

  38. M. Gäumann, R Trivedi, and W. Kurz. Nucleation ahead of the advancing interface in directional solidification. Materials Science and Engineering: A, 226-228:763–769, jun 1997.

    Google Scholar 

  39. W Kurz, B Giovanola, and R. Trivedi. Theory of microstructural development during rapid solidification. Acta Metallurgica, 34(5):823–830, may 1986.

    Article  CAS  Google Scholar 

  40. William J. Boettinger. The Solidification of Multicomponent Alloys. Journal of Phase Equilibria and Diffusion, 37(1):4–18, feb 2016.

    Article  CAS  Google Scholar 

  41. W.J. Boettinger, U.R. Kattner, S.R. Coriell, Y.A. Chang, and B.A. Mueller. Development of Multicomponent Solidification Micromodels Using a Thermodynamic Phase Diagram Data Base. In Conference on modeling of casting, welding and advanced solidification processes, page 1030, London, UK, 1995.

    Google Scholar 

  42. Matthias Gäumann. Epitaxial Laser Metal Forming of a Single Crystal Superalloy. Docteur és sciences techniques, École Polytechnique Fédérale de Lausanne, 1999.

    Google Scholar 

  43. G.L. Knapp, T. Mukherjee, J.S. Zuback, H.L. Wei, T.A. Palmer, A. De, and T. DebRoy. Building blocks for a digital twin of additive manufacturing. Acta Materialia, 135:390–399, aug 2017.

    Article  CAS  Google Scholar 

  44. C R Heiple and J R Roper. Mechanism for Minor Element Effect on GTA Fusion Zone Geometry. Welding Journal, 61(4):97s–102s, 1982.

    Google Scholar 

  45. Damien Texier, Ana Casanova Gómez, Stéphane Pierret, Jean-Michel Franchet, Tresa M. Pollock, Patrick Villechaise, and Jonathan Cormier. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature. Metallurgical and Materials Transactions A, 47(3):1096–1109, mar 2016.

    Google Scholar 

  46. P.N. Quested, D.M. Hayes, and K.C. Mills. Factors affecting raft formation in electron beam buttons. Materials Science and Engineering: A, 173(1-2):369–375, dec 1993.

    Article  Google Scholar 

  47. M. Haines, A. Plotkowski, C.L. Frederick, E.J. Schwalbach, and S.S. Babu. A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing. Computational Materials Science, 155(September):340–349, dec 2018.

    Article  CAS  Google Scholar 

  48. John H. Martin, Brennan D. Yahata, Jacob M. Hundley, Justin A. Mayer, Tobias A. Schaedler, and Tresa M. Pollock. 3D printing of high-strength aluminium alloys. Nature, 549(7672):365–369, sep 2017.

    Google Scholar 

Download references

Acknowledgements

This research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC, and performed in partiality at the Oak Ridge National Laboratory’s Manufacturing Demonstration Facility, an Office of Energy Efficiency and Renewable Energy user facility. This research was also supported by the Department of Energy RAMP-UP program under award number 4000156470. Conflicts of Interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Polonsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polonsky, A.T., Raghavan, N., Echlin, M.P., Kirka, M.M., Dehoff, R.R., Pollock, T.M. (2020). 3D Characterization of the Columnar-to-Equiaxed Transition in Additively Manufactured Inconel 718. In: Tin, S., et al. Superalloys 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-51834-9_97

Download citation

Publish with us

Policies and ethics