Skip to main content

Robust Impedance Control of Constrained Piezoelectric Actuator-Based End-Effector

  • Chapter
  • First Online:
Force and Position Control of Mechatronic Systems

Abstract

Impedance control is one of the common force and position control methods. It regulates the relationship between motion and force which is able to deal with the tasks where the control subject has certain level of uncertainty. It is often used in the applications of robot–environment interaction or human–robot interaction where the force–position relation is of concern. In this chapter, a robust impedance control is designed for a semi-automated surgical device based on the dynamic coordination of force and position control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, vol. 1 (Springer, Science & Business Media, 1997)

    Google Scholar 

  2. D. Henderson. Mechanism comprised of ultrasonic lead screw motor. US Patent, US7309943B2 (2008)

    Google Scholar 

  3. C.-H. Huang, J. Zou, A novel two-axis micromechanical scanning transducer using water-immersible electromagnetic actuators for handheld 3d ultrasound imaging. Sens. Actuators A: Phys. 236, 281–288 (2015)

    Article  Google Scholar 

  4. C.J. Payne, G.-Z. Yang, Hand-held medical robots. Ann. Biomed. Eng. 42(8), 1594–1605 (2014)

    Article  Google Scholar 

  5. S. Catarino, L.R. Silva, P. Mendes, J. Miranda, S. Lanceros-Mendez, G. Minas, Piezoelectric actuators for acoustic mixing in microfluidic devices-numerical prediction and experimental validation of heat and mass transport. Sens. Actuators B Chem. 205, 206–214 (2014)

    Article  Google Scholar 

  6. J. Zhang, J. Tian, N. Ta, X. Huang, Z. Rao, Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties, in Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine (2016), p. 0954411916652923

    Google Scholar 

  7. S. Yang, R.A. MacLachlan, C.N. Riviere, Manipulator design and operation of a six-degree-of-freedom handheld tremor-canceling microsurgical instrument. IEEE/ASME Trans. Mechatron. 20(2), 761–772 (2015)

    Article  Google Scholar 

  8. Q. Xu, Micromachines for Biological Micromanipulation (Springer, 2018)

    Google Scholar 

  9. C. Zhao, Ultrasonic Motors: Technologies and Applications (Springer, Science & Business Media, 2011)

    Book  Google Scholar 

  10. G.-Y. Gu, L.-M. Zhu, C.-Y. Su, H. Ding, Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation. IEEE/ASME Trans. Mechatron. 18(5), 1459–1471 (2013)

    Article  Google Scholar 

  11. H. Ghafarirad, S.M. Rezaei, M. Zareinejad, A.A. Sarhan, Disturbance rejection-based robust control for micropositioning of piezoelectric actuators. Comptes Rendus Mécanique 342(1), 32–45 (2014)

    Article  Google Scholar 

  12. C.-M. Wen, M.-Y. Cheng, Development of a recurrent fuzzy CMAC with adjustable input space quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated micromotion stage. IEEE Trans. Ind. Electron. 60(11), 5105–5115 (2013)

    Article  Google Scholar 

  13. J. Minase, T.-F. Lu, B. Cazzolato, S. Grainger, A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis. Eng. 34(4), 692–700 (2010)

    Article  Google Scholar 

  14. K. Ohnishi, M. Shibata, T. Murakami, Motion control for advanced mechatronics. IEEE/ASME Trans. Mechatron. 1(1), 56–67 (1996)

    Article  Google Scholar 

  15. E. Sariyildiz, K. Ohnishi, Stability and robustness of disturbance-observer-based motion control systems. IEEE Trans. Ind. Electron. 62(1), 414–422 (2015)

    Article  Google Scholar 

  16. K.-S. Kim, K.-H. Rew, S. Kim, Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Trans. Autom. Control 55(8), 1905–1911 (2010)

    Article  MathSciNet  Google Scholar 

  17. K. Ohishi, Realization of fine motion control based on disturbance observer, in 10th IEEE International Workshop on Advanced Motion Control (AMC’08) (2008), pp. 1–8

    Google Scholar 

  18. K. Yamada, I. Murakami, Y. Ando, T. Hagiwara, Y. Imai, G.D. Zhi, M. Kobayashi, The parametrization of all disturbance observers for plants with input disturbance, in 4th IEEE Conference on Industrial Electronics and Applications (ICIEA 2009) (2009), pp. 41–46

    Google Scholar 

  19. Q. Xu, Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control. IEEE Trans. Autom. Sci. Eng. 14(1), 238–248 (2017)

    Article  Google Scholar 

  20. Y. Shtessel, C. Edwards, L. Fridman, A. Levant, Sliding Mode Control and Observation (Springer, 2014)

    Google Scholar 

  21. L. Besnard, Y.B. Shtessel, B. Landrum, Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J. Frankl. Inst. 349(2), 658–684 (2012)

    Google Scholar 

  22. Y.-S. Lu, Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives. IEEE Trans. Ind. Electron. 56(9), 3743–3750 (2009)

    Article  Google Scholar 

  23. X. Kun, C. Mou, Terminal sliding mode control with disturbance observer for autonomous mobile robots, in 2015 IEEE 34th Chinese Control Conference (CCC2015) (2015), pp. 765–770

    Google Scholar 

  24. S. Sakaino, T. Sato, K. Ohnishi, Precise position/force hybrid control with modal mass decoupling and bilateral communication between different structures. IEEE Trans. Ind. Inf. 7(2), 266–276 (2011)

    Google Scholar 

  25. P. Gierlak, Hybrid position/force control in robotised machining. Solid State Phenom. 210, 192–199 (2014). Trans Tech Publ

    Google Scholar 

  26. Q. Xu, Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly. IEEE Trans. Autom. Sci. Eng. 10(3), 503–514 (2013)

    Article  Google Scholar 

  27. Q. Xu, Robust impedance control of a compliant microgripper for high-speed position/force regulation. IEEE Trans. Ind. Electron. 62(2), 1201–1209 (2015)

    Article  Google Scholar 

  28. S. Oh, H. Woo, K. Kong, Frequency-shaped impedance control for safe human-robot interaction in reference tracking application. IEEE/ASME Trans. Mechatron. 19(6), 1907–1916 (2014)

    Article  Google Scholar 

  29. Q. Xu, Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper. IEEE Trans. Robot. 29(3), 663–673 (2013)

    Article  Google Scholar 

  30. H.C. Liaw, B. Shirinzadeh, Robust generalised impedance control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation. Sens. Actuators A Phys. 148(2), 443–453 (2008)

    Article  Google Scholar 

  31. N. Hogan, Impedance control: an approach to manipulation: Part ii-implementation. J. Dyn. Syst. Meas. Control 107(1), 8–16 (1985)

    Article  Google Scholar 

  32. T. Kröger, D. Kubus, F.M. Wahl, Force and acceleration sensor fusion for compliant manipulation control in 6 degrees of freedom. Adv. Robot. 21(14), 1603–1616 (2007)

    Article  Google Scholar 

  33. K.K. Tan, W. Liang, L.P. Pham, S. Huang, C.W. Gan, H.Y. Lim, Design of a surgical device for office-based myringotomy and grommet insertion for patients with otitis media with effusion. J. Med. Devices 8(3), 031001–1–12 (2014)

    Google Scholar 

  34. J. Shan, L. Yang, Z. Li, Output feedback integral control for nano-positioning using piezoelectric actuators. Smart Mater. Struct. 24(4), 045001 (2015)

    Article  Google Scholar 

  35. J.Y. Lau, W. Liang, K.K. Tan, Enhanced robust impedance control of a constrained piezoelectric actuator-based surgical device. Sens. Actuators A Phys. 290(97–106) (2019)

    Google Scholar 

  36. S. Chiaverini, B. Siciliano, L. Villani, A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans. Mechatron. 4(3), 273–285 (1999)

    Article  Google Scholar 

  37. D.A. Lawrence, Impedance control stability properties in common implementations, in 1988 IEEE International Conference on Robotics and Automation (1988), pp. 1185–1190

    Google Scholar 

  38. J.C. Arevalo, E. Garcia, Impedance control for legged robots: an insight into the concepts involved. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 1400–1411 (2012)

    Google Scholar 

  39. H.S. Lee, Robust Digital Tracking Controllers for High-speed/high-accuracy Positioning Systems (University of California, Berkeley, 1994)

    Google Scholar 

  40. H. Shim, Y.-J. Joo, State space analysis of disturbance observer and a robust stability condition, in 2007 46th IEEE Conference on Decision and Control (2007), pp. 2193–2198

    Google Scholar 

  41. Y. Joo, G. Park, Reduced order type-k disturbance observer based on a generalized Q-filter design scheme, in 2014 14th IEEE International Conference on Control, Automation and Systems (ICCAS2014) (2014), pp. 1211–1216

    Google Scholar 

  42. J.-J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall Englewood Cliffs, NJ, 1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Heng Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, T.H., Liang, W., de Silva, C.W., Tan, K.K. (2021). Robust Impedance Control of Constrained Piezoelectric Actuator-Based End-Effector. In: Force and Position Control of Mechatronic Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-030-52693-1_7

Download citation

Publish with us

Policies and ethics