Skip to main content

Simultaneous Optimisation of Confocal and Non-confocal Images in an AOSLO with a Reconfigurable Aperture Pattern

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Abstract

The conventional adaptive optics scanning laser ophthalmoscopy (AOSLO) arrangement is specifically designed to capture the confocal (directly backscattered) light by placing a physical pinhole conjugate to a chosen layer in the retina. This arrangement can be used to generate high contrast images of the photoreceptor mosaic by limiting the light from other retinal layers, such as the retinal pigment epithelium. However, there is growing demand for the study of different retinal features that has led to the development of different off-axis techniques to collect the non-confocal (multiply scattered) light. In this paper, we replace the physical pinhole of the AOSLO with a reconfigurable aperture to simultaneously collect the directly backscattered light, generating confocal images, as well as the multiply scattered light, generating non-confocal images. The reconfigurable aperture pattern is implemented with a digital micromirror device (DMD) and is optimised based on the information collected from Shack Hartmann wavefront sensor data. We present preliminary experimental results with a human eye to illustrate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roorda, A., Romero-Borja, F., Donnelly III, W.J., Queener, H., Hebert, T.J., Campbell, M.C.: Adaptive optics scanning laser ophthalmoscopy. Opt. Express 10(9), 405–412 (2002)

    Article  Google Scholar 

  2. Zhang, Y., Poonja, S., Roorda, A.: MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt. Lett. 31(9), 1268–1270 (2006)

    Article  Google Scholar 

  3. Hammer, D.X., Ferguson, R.D., Bigelow, C.E., Iftimia, N.V., Ustun, T.E., Burns, S.A.: Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. Opt. Express 14(8), 3354–3367 (2006)

    Article  Google Scholar 

  4. Dubra, A., et al.: Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed. Optics Express 2(7), 1864–1876 (2011)

    Article  Google Scholar 

  5. Burns, S.A., Elsner, A.E., Sapoznik, K.A., Warner, R.L., Gast, T.J.: Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 68, 1–30 (2019)

    Article  Google Scholar 

  6. Scoles, D., Sulai, Y.N., Dubra, A.: In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed. Optics Express 4(9), 1710–1723 (2013)

    Article  Google Scholar 

  7. Scoles, D., et al.: In vivo imaging of human cone photoreceptor inner segments. Invest. Ophthalmol. Vis. Sci. 55(7), 4244–4251 (2014)

    Article  Google Scholar 

  8. Rossi, E.A., et al.: Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc. Natl. Acad. Sci. 114(3), 586–591 (2017)

    Article  Google Scholar 

  9. Chui, T.Y., VanNasdale, D.A., Burns, S.A.: The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed. Optics Express 3(10), 2537–2549 (2012)

    Article  Google Scholar 

  10. Sapoznik, K.A., Luo, T., De Castro, A., Sawides, L., Warner, R.L., Burns, S.A.: Enhanced retinal vasculature imaging with a rapidly configurable aperture. Biomed. Optics Express 9(3), 1323–1333 (2018)

    Article  Google Scholar 

  11. De Castro, A., Sawides, L., Qi, X., Burns, S.A.: Adaptive optics retinal imaging with automatic detection of the pupil and its boundary in real time using Shack-Hartmann images. Appl. Opt. 56(24), 6748–6754 (2017)

    Article  Google Scholar 

  12. Chen, L., Singer, B., Guirao, A., Porter, J., Williams, D.R.: Image metrics for predicting subjective image quality. Optom. Vis. Sci. 82(5), 358–369 (2005)

    Article  Google Scholar 

  13. Venkateswaran, K., Roorda, A., Romero-Borja, F.: Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope. J. Biomed. Optics 9(1), 132–139 (2004)

    Article  Google Scholar 

  14. Southwell, W.H.: Wave-front estimation from wave-front slope measurements. J. Opt. Soc. Am. 70(8), 998–1006 (1980)

    Article  Google Scholar 

  15. Artal, P., Marcos, S., Navarro, R., Williams, D.R.: Odd aberrations and double-pass measurements of retinal image quality. J. Opt. Soc. Am. A 12(2), 195–201 (1995)

    Article  Google Scholar 

  16. Rativa, D., Vohnsen, B.: Single-and multimode characteristics of the foveal cones: the super-Gaussian function. J. Mod. Opt. 58(19–20), 1809–1816 (2011)

    Article  Google Scholar 

  17. Vohnsen, B.: Directional sensitivity of the retina: a layered scattering model of outer-segment photoreceptor pigments. Biomed. Optics Express 5(5), 1569–1587 (2014)

    Article  Google Scholar 

  18. Young, L.K., Morris, T.J., Saunter, C.D., Smithson, H.E.: Compact, modular and in-plane AOSLO for high-resolution retinal imaging. Biomed. Optics Express 9(9), 4275–4293 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

Authors would like to acknowledge the financial support from various sources: Fight For Sight (1467/8); University of Oxford Wellcome Trust Institutional Strategic Support Fund (105605/Z/14/Z); the University of Oxford Medical Research Fund (MRF/LSV2015/2161); the EPA Cephalosporin Fund (CF 277); the John Fell Oxford University Press (OUP) Research Fund (103/786 and 151/139); The Dowager Countess Eleanor Peel Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pathak, B., Young, L., Smithson, H. (2020). Simultaneous Optimisation of Confocal and Non-confocal Images in an AOSLO with a Reconfigurable Aperture Pattern. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics