Skip to main content

QPTAS for the CVRP with a Moderate Number of Routes in a Metric Space of Any Fixed Doubling Dimension

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2020)

Abstract

The Capacitated Vehicle Routing Problem (CVRP) is the well-known combinatorial optimization problem having a host of valuable practical applications in operations research. The CVRP is strongly NP-hard both in its general case and even in very specific settings (e.g., on the Euclidean plane). The problem is APX-complete for an arbitrary metric and admits Quasi-Polynomial Time Approximation Scheme (QPTAS) in the Euclidean space of any fixed dimension (and even PTAS, under additional constraints). In this paper, we significantly extend the class of metric settings of the CVRP that can be approximated efficiently. We show that the metric CVRP admits QPTAS any time, when it is formulated in a metric space of a fixed doubling dimension \(d>1\) and is restricted to have an optimal solution of at most \(\mathrm {polylog}\,{n}\) routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamaszek, A., Czumaj, A., Lingas, A.: PTAS for k-tour cover problem on the plane for moderately large values of \(k\). Int. J. Found. Comput. Sci. 21(06), 893–904 (2010). https://doi.org/10.1142/S0129054110007623

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, F., Sörensen, K.: Knowledge-guided local search for the vehicle routing problem. Comput. Oper. Res. 105, 32–46 (2019). https://doi.org/10.1016/j.cor.2019.01.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45, 753–782 (1998)

    Article  MathSciNet  Google Scholar 

  4. Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by \(k\)-tours: towards a polynomial time approximation scheme for general \(k\). In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 275–283. ACM, New York (1997). https://doi.org/10.1145/258533.258602

  5. Bartal, Y., Gottlieb, L.A., Krauthgamer, R.: The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput. 45(4), 1563–1581 (2016). https://doi.org/10.1137/130913328

    Article  MathSciNet  MATH  Google Scholar 

  6. Becker, A., Klein, P.N., Schild, A.: A PTAS for bounded-capacity vehicle routing in planar graphs. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 99–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_8

    Chapter  Google Scholar 

  7. Chen, J., Gui, P., Ding, T., Zhou, Y.: Optimization of transportation routing problem for fresh food by improved ant colony algorithm based on Tabu search. Sustainability 11 (2019). https://doi.org/10.3390/su11236584

  8. Dantzig, G., Ramser, J.: The truck dispatching problem. Manag. Sci. 6, 80–91 (1959)

    Article  MathSciNet  Google Scholar 

  9. Das, A., Mathieu, C.: A quasipolynomial time approximation scheme for euclidean capacitated vehicle routing. Algorithmica 73(1), 115–142 (2014). https://doi.org/10.1007/s00453-014-9906-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated routing problems. Math. Oper. Res. 10(4), 527–542 (1985). https://doi.org/10.1287/moor.10.4.527

    Article  MathSciNet  MATH  Google Scholar 

  11. Hokama, P., Miyazawa, F.K., Xavier, E.C.: A branch-and-cut approach for the vehicle routing problem with loading constraints. Expert Syst. Appl. 47, 1–13 (2016). https://doi.org/10.1016/j.eswa.2015.10.013

    Article  Google Scholar 

  12. Khachai, M.Y., Dubinin, R.D.: Approximability of the vehicle routing problem in finite-dimensional euclidean spaces. Proc. Steklov Inst. Math. 297(1), 117–128 (2017). https://doi.org/10.1134/S0081543817050133

    Article  MathSciNet  MATH  Google Scholar 

  13. Khachay, M., Ogorodnikov, Y.: Efficient PTAS for the euclidean CVRP with time windows. In: van der Aalst, W.M.P., et al. (eds.) AIST 2018. LNCS, vol. 11179, pp. 318–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-11027-7_30

    Chapter  Google Scholar 

  14. Khachay, M., Ogorodnikov, Y.: Approximation scheme for the capacitated vehicle routing problem with time windows and non-uniform demand. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 309–327. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_22

    Chapter  MATH  Google Scholar 

  15. Khachay, M., Dubinin, R.: PTAS for the euclidean capacitated vehicle routing problem in \(R^d\). In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 193–205. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_16

    Chapter  Google Scholar 

  16. Khachay, M., Ogorodnikov, Y.: Towards an efficient approximability for the euclidean capacitated vehicle routing problem with time windows and multiple depots. IFAC PapersOnline 52(13), 2644–2649 (2019). https://doi.org/10.1016/j.ifacol.2019.11.606

    Article  Google Scholar 

  17. Khachay, M., Zaytseva, H.: Polynomial time approximation scheme for single-depot euclidean capacitated vehicle routing problem. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 178–190. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_14

    Chapter  Google Scholar 

  18. Nalepa, J., Blocho, M.: Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft. Comput. 20(6), 2309–2327 (2016). https://doi.org/10.1007/s00500-015-1642-4

    Article  Google Scholar 

  19. Necula, R., Breaban, M., Raschip, M.: Tackling dynamic vehicle routing problem with time windows by means of ant colony system. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2480–2487 (2017). https://doi.org/10.1109/CEC.2017.7969606

  20. Papadimitriou, C.: Euclidean TSP is NP-complete. Theor. Comput. Sci. 4, 237–244 (1977)

    Article  Google Scholar 

  21. Pessoa, A.A., Sadykov, R., Uchoa, E.: Enhanced branch-cut-and-price algorithm for heterogeneous fleet vehicle routing problems. Eur. J. Oper. Res. 270(2), 530–543 (2018). https://doi.org/10.1016/j.ejor.2018.04.009

    Article  MathSciNet  MATH  Google Scholar 

  22. Polat, O.: A parallel variable neighborhood search for the vehicle routing problem with divisible deliveries and pickups. Comput. Oper. Res. 85, 71–86 (2017). https://doi.org/10.1016/j.cor.2017.03.009

    Article  MathSciNet  MATH  Google Scholar 

  23. Qiu, M., Fu, Z., Eglese, R., Tang, Q.: A tabu search algorithm for the vehicle routing problem with discrete split deliveries and pickups. Comput. Oper. Res. 100, 102–116 (2018). https://doi.org/10.1016/j.cor.2018.07.021

    Article  MathSciNet  MATH  Google Scholar 

  24. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 281–290. Association for Computing Machinery, New York (2004). https://doi.org/10.1145/1007352.1007399

  25. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. MOS-SIAM Series on Optimization, 2nd edn. SIAM, Philadelphia (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Khachay or Yuri Ogorodnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khachay, M., Ogorodnikov, Y. (2020). QPTAS for the CVRP with a Moderate Number of Routes in a Metric Space of Any Fixed Doubling Dimension. In: Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2020. Lecture Notes in Computer Science(), vol 12096. Springer, Cham. https://doi.org/10.1007/978-3-030-53552-0_4

Download citation

Publish with us

Policies and ethics