Skip to main content

Secondary Metabolites from Plant Sources

  • Chapter
  • First Online:
Bioactive Natural Products for Pharmaceutical Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 140))

Abstract

A Plant can be considered as a storehouse of a huge number of chemicals biosynthesized by many metabolic pathways like photosynthesis, glycolysis, Kreb’s cycle, shikimic acid pathway, mevalonic acid pathway, etc. Primary metabolites include sugars, citric acid, Kreb's cycle intermediates, amino acids, protein, nucleic acid, and polysaccharides. Primary metabolites are identical in all living plant cells and they carry out basic life activities like growth, cell division, storage, respiration, and reproduction. On the other hand, the secondary plant metabolites, well-known as phytoconstituents are derived from primary metabolites by the influence of various surroundings stress like light, temperature, and different metals with the help of several metabolic pathways. The formation of secondary metabolites is very much specific to the plant family concern. By using similar primary metabolites, plants of various families produce a large number of different secondary metabolites having various pharmaceutical values. Generally, secondary metabolites of the plant have a great role to defense from herbivorous and pathogens, attract other animals and protect from UV radiation. Moreover, secondary metabolites show a lot of importance in the pharmaceutical application as medicines used for the treatment of various diseases in the folklore medicine as well as traditional medicine. They are also used as flavors in pharmaceutical ingredients, perfumes in pharmaceutical and perfumery industry, insecticides, dyes, polymers used for the preparation new drug delivery systems and therefore, they have a great value to economic concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akihisa T, Koike K, Kimura Y, Sashida N, Matsumoto T, Ukiya M, Nikaido T (1999) Acyclic and incompletely cyclized triterpene alcohols in the seed oils of theaceae and gramineae. Lipids 34(11):1151–1175

    Article  CAS  Google Scholar 

  • Ali M (2019) Pharmacognosy and phytochemistry, 2nd edn. CBS Publishers and Distribution, New Delhi, pp 1–514

    Google Scholar 

  • Amann R, Peskar BA (2002) Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol 447(1):1–9

    Article  CAS  Google Scholar 

  • Anbalahan N (2017) Pharmacological activity of mucilage isolated from medicinal plants. Int J Appl Pure Sci Agri 3(1): 98–113. e-ISSN: 2394-5532, p-ISSN: 2394-823X

    Google Scholar 

  • Aniszewski T (2007) Alkaloids-secrets of life: alkaloid chemistry, biological significance, applications and pharmacological role, Elsevier, pp 1–334. https://doi.org/10.1016/B978-0-444-52736-3.X5000-4.

  • Asif HM, Akram M, Saeed TM, Khan I, Akhtar N, Ur Rehman R, Ali Shah SM, Ahmed K, Shaheen G (2011) Review paper carbohydrates. Int Res J Biochem Bioinformatics 1(1):1–5

    Google Scholar 

  • Assa Y, Shany S, Gestetner B, Tencer Y, Birk Y, Bondi A (1973) Interaction of alfalfa saponins with components of the erythrocyte membrane in hemolysis. Biochem Biophys Acta 307(1):83–91

    Article  CAS  Google Scholar 

  • Au TK, Chick PC, Leung PC (2000) The biology of ophiobolins. Life Sci 67:733–742

    Article  CAS  Google Scholar 

  • Bagci E, Yazgin A, Hayta S, Cakilcioglu U (2010) Composition of the essential oil of Teucrium chamaedrys L. (Lamiaceae) from Turkey, J Med Plants Res 4(23): 2587–2589

    Google Scholar 

  • Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. In: Cutler DF, Alvin KL (eds) The plant cuticle, Price C.E Academic press, London, UK. ISBN 0-12-19990-3

    Google Scholar 

  • Bennets HW, Underwood EJ, Shier FL (1946) A specific breeding problem of sheep in subterranean clover pastures in Western Australia. Aust Vet J 22(1):2–12

    Article  Google Scholar 

  • Bergman ME, Davis B, Phillips A (2019) Review: medically useful plant terpenoids—biosynthesis occurrence and mechanism of action. Molecules 24:3961–3983. https://doi.org/10.3390/molecules24213961

    Article  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Bruni R et al (2019) Botanical sources chemistry analysis and biological activity of furanocoumarins of pharmaceutical interest. Molecules 24:2163–2187

    Article  CAS  Google Scholar 

  • Catarino MD, Silva AMS, Cruz MT, Cardoso SM (2017) Antioxidant and anti-inflammatory activities of Geranium robertianum L. decoctions. Food and Function 8(9): 3355–3365. https://doi.org/10.1039/c7fo00881c

  • Cheeke PR (2001) Glycosides: naturally occurring, Wiley online library. https://10.1038/npg.els.0000692

    Google Scholar 

  • Clarke EGC (1970) The forensic chemistry of alkaloids. In: Manske HF (ed) The Alkaloids, vol XII. Academic Press, New York, pp 514–590

    Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (Secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. Courier companies Inc., USA, pp 1250–1318

    Google Scholar 

  • Culioli G, Mathe C, Archier P, Vieillescazes C (2003) A lupane triterpene from frankincense (Boswellia sp., Burseraceae). Phytochemistry 62:537–541. https://doi.org/10.1016/S0031-9422(02)00538-1

    Article  CAS  Google Scholar 

  • Cunha WR, Andrade e Silva ML, Veneziani RCL, Ambrosio SR, Bastos JK (2012) Lignans: chemical and biological properties. In: Phytochemicals—a global perspective of their role in nutrition and health, pp 213–234. 105772/28471

    Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties, Molecules 15(10):7313–7352

    Google Scholar 

  • El Aziz MMA, Ashour AS, Melad ASG (2019) A review on saponins from medicinal plants: chemistry isolation and determination. J Nanomed Res 8(1):6–12

    Google Scholar 

  • Evans D, Mitch C (1982) Studies directed towards the total synthesis of morphine alkaloids. Tetrahedron Lett 23(3):285–288

    Article  CAS  Google Scholar 

  • Evans WC (2009) Pharmacognosy, 16th edn. Edinburgh, London, New York Philadelphia, St Louis Sydney Toronto, pp 1–616

    Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–S14. https://doi.org/10.1194/jlr.R800095-JLR200

    Article  CAS  Google Scholar 

  • Gehm BD, McAndrews JM, Chien P, Jameson JL (1997) Resveratrol a polyphenolic compound found in grapes and wine is an agonist for the estrogen receptor. Proc Natl Acad Sci USA 94(25):14138–14143

    Article  CAS  Google Scholar 

  • Giweli AA, Dzamic AM, Sokovic M, Ristic M, Janac kovic P, Marin P (2013) The chemical composition, antimicrobial and antioxidant activities of the essential oil of Salvia fruticosa Growing Wild in Libya. Archives Bio Sci 1(65):321–329

    Article  Google Scholar 

  • Goenka P, Sarawgi A, Karun V, Nigam AG, Dutta S, Marwah N (2013) Camellia sinensis (tea): implications and role in preventing dental decay. Pharmacognosy Rev 7(14):152–156. https://doi.org/10.4103/0973-7847.120515

    Article  CAS  Google Scholar 

  • Golawska S, Sprawka I, Lukasik I, Golawski A (2013) Are naringenin and quercetin useful chemicals in pest-management strategies. J Pest Sci 87(1):173–180

    Article  Google Scholar 

  • Guclu-Ustundag O, Mazza G (2007) Saponins: properties, applications and processing, critical reviews in food science and nutrition 47:231–258. ISSN: 1040–8398. DOI: https://doi.org/10.1080/10408390600698197

  • Hagerman AE, Butler LG (1981) The specificity of proanthocyanidin-protein interactions. J Bio Chem 10(256):4494–4497

    Article  Google Scholar 

  • Harborne JB, Baxter H (1993) Phytochemical dictionary: a handbook of bioactive compounds from plants. Taylor and Francis, London, Washington, DC

    Google Scholar 

  • Herrmann K, Nagel CW (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28(4):315–347

    Article  CAS  Google Scholar 

  • Hikino H(1985) Recent research on oriental medicinal plants. ln: Wanger H, Hiniko H, Farnsworth NR (eds) Economic and medicinal plant research, vol 1. Academic Press, London, pp 53–85

    Google Scholar 

  • Hoffmann D (2003) Medical herbalism: The science and practice of herbal medicine. Healing Arts Press, One Park Street, Rochester, Vermont (978-089281749-8)

    Google Scholar 

  • Hossain MT, Asadujjaman M, Manik MIN, Matin MA, Chowdhury RZ, Rashid MH (2019) Review: a study on the pharmacological effects and mechanism of action of alkaloids glycosides and saponins. Pharmaceutical and Chem J 6(2):112–122

    CAS  Google Scholar 

  • Ishikura H, Mochizuki T, Izumi Y, Usui T, Sawada H, Uchino H (1984) Differentiation of mouse leukemic M1 cells induced by polyprenoids. Leuk Res 8(5):843–852

    Article  CAS  Google Scholar 

  • Jepson RG, Craig JC (2008) Cranberries for preventing urinary tract infections, cochrane database of systematic reviews 1:CD001321, pub 4. https://doi.org/10.1002/14651858.CD001321.

  • Jones ME, Kossel A (1953) A biographical sketch. Yale J Bio Med 26(1):80–97

    CAS  Google Scholar 

  • Jung H, Su B, Keller W, Mehta R, Kinghorn A (2006) Antioxidant and xanthones from pericarp of Garcinia mangostana (Mangosteen). J Agri Food Chem 54(6):2077–2082

    Article  CAS  Google Scholar 

  • Kaur J (2010) Chemistry of natural products, S. Vikas and company (publishing house), 1st ed. Jalandhar, India, pp 1–452. ISBN: 978-81-909385-3-2

    Google Scholar 

  • Khowala S, Verma D, Banik SP (2008) Carbohydrates—biomolecules: introduction, structure, and function, National Science Digital Library, pp 1–93. https://www.researchgate.net/publication/200787272

  • Kokate CK, Purohit AP, Gokhale SB (2005) Pharmacognosy. Nirali Prakashan, India, pp 1–618

    Google Scholar 

  • Lalonde RT (2005) Terpenes and terpenoids. Van Nostrand’s Encyclopedia of Chemistry, Wiley Online Library. https://doi.org/10.1002/0471740039.vec2473

    Article  Google Scholar 

  • Montanher AB, Zucolotto SM, Schenkel EP, Frode TS (2007) Evidence of anti-inflammatory effects of Passiflora edulis in an inflammation model. J Ethnopharmacol 109(2):281–288

    Article  Google Scholar 

  • Morrison RT, Boyd RN (2004) Organic chemistry, 6th edn. Prentice Hall of India Pvt. Ltd., New Delhi, pp 1–1278

    Google Scholar 

  • Mugford ST, Osbourn A (2013) Saponin synthesis and function. In: Bach TJ, Rohmer M (Eds) Isoprenoid synthesis in plants and microorganisms: new concepts and experimental approaches, Springer Science and Business media, New York

    Google Scholar 

  • Nicolaou KC, Jason S, Chen EJC ( 2011) In: Classics in total synthesis. further targets, strategies, methods III. Wiley-VCH, Weinheim, pp 1–770. ISBN:978-3-527-32957-1

    Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. . J Nutrional Sci 5:1–15

    Google Scholar 

  • Papanov GY, Malakov PY (1980) Furanoid diterpenes in the bitter fraction of Teucrium chamaedrys L. Naturforsch 35b:764–766

    Google Scholar 

  • Park ES, Moon WS, Song MJ, Kim MN, Chung KH, Yoon JS (2001) Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeterior Biodegradation 47(4):209–214

    Article  CAS  Google Scholar 

  • Pelczar MJ, ChanECS KNR (1988) The control of microorganisms by physical agents. Microbiology. McGraw-Hill International, New York, pp 469–509

    Google Scholar 

  • Pengelly A (2004) In: The constituents of medicinal plants: an introduction to the chemistry and therapeutics of herbal medicine, CABI Publishing, pp 1–184

    Google Scholar 

  • Perveen S (2018) Introductory chapter: terpenes and terpenoids. In: Terpenes and terpenoids, Intechopen, pp 1–13. DOI:https://doi.org/10.5772/intechopen.79683.

  • Santos-Sanchez NF, Coronado RS, Carlos BH, Canongo CV(2019) Shikimic acid pathway in biosynthesis of phenolic compounds. In: Plant physiological aspects of phenolic compounds, Intechopen, pp 1–15. https://doi.org/10.5772/intechopen.83815

  • Seigler DS (1995) Plant Secondary Metabolism. Springer Science Business Media, New York. ISBN: 978-1-4613-7228-8; ISBN: 978-1-4615-4913-0 (eBook). https://doi.org/10.1007/978-1-4615-4913-0

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69(3):273–278. https://doi.org/10.1017/S002966511000162X

    Article  CAS  Google Scholar 

  • Sieniawska E, Baj T (2017) Tannins—an overview. In: Badal S, Delgoda R (eds) Pharmacognosy fundamental, application and strategies. Science Direct, pp 199–232. https://doi.org/10.1016/B978-0-12-802104-0.00010-X

  • Sparg SG, Staden JV (2004) Biological activities and distribution of plant saponins. J Ethnopharmacology 94(2–3):219–243

    Article  CAS  Google Scholar 

  • Subramaniam S, Fahy E, Gupta S, Sud M, Byrnes RW, Cotter D, Dinasarapu AR, Maurya MR (2011) Bioinformatics and systems biology of the lipidome. Chem Rev 111(10):6452–6490. https://doi.org/10.1021/cr200295k

    Article  CAS  Google Scholar 

  • Susana J, Beatriz GM, Fabiana CM, Maria AD, Moacir GP (2011) Antifungal activity of five species of Polygala. Brazilian J Microbiol 42(3):1065–1075. https://doi.org/10.1590/S1517-838220110003000027

    Article  Google Scholar 

  • Tadeusz A (2015) Alkaloids: chemistry, biology, ecology, and applications, Elsevier, 2nd ed. Amsterdam, Netherlands, pp 1–97. ISBN: 13: 978–0444594334

    Google Scholar 

  • Tyler VE, Brady .R, Robbers JE (1988) Pharmacognosy, 9th Ed. Lea and Febiger, Philadelphia

    Google Scholar 

  • Wallis TE (2005) Textbook of pharmacognosy, 5th edn. CBS Publishers and Distributors Pvt. Ltd., New Delhi

    Google Scholar 

  • Wang TY, Li Q, Bi KS (2018) Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharmaceutical Sci 13(1):12–23

    Google Scholar 

  • Wilhelm R, Hermann M (2012) “Esters, organic” Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Verlag GmbH and Co, KGaA, Weinheim. https://doi.org/10.1002/14356007.a09_565.pub2

    Book  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485-493

    Google Scholar 

  • Xu L, Wu Y, Zhao X, Zhang W (2015) The study on biological and pharmacological activity of coumarins. In: Asia-Pacific energy equipment engineering research conference, pp 135–138

    Google Scholar 

  • Yi Z, Wang Z, Li H, Liu M (2004) Inhibitory effect of tellimagrandin I on chemically induced differentiation of human leukemia K562 cells. Toxicol Lett 147(2):109–119

    Article  CAS  Google Scholar 

  • Zbigniew S, Beata Z, Kamil J, Roman F, Barbara K, Andrzej D (2014) Antimicrobial and antiradical activity of extracts obtained from leaves of three species of the genus Pyrus. Microbial Drug Resist 20(4):337–343. https://doi.org/10.1089/mdr.2013.0155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandi Charan Kandar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kandar, C.C. (2021). Secondary Metabolites from Plant Sources. In: Pal, D., Nayak, A.K. (eds) Bioactive Natural Products for Pharmaceutical Applications. Advanced Structured Materials, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-54027-2_10

Download citation

Publish with us

Policies and ethics