Skip to main content

Efficient Translation of Safety LTL to DFA Using Symbolic Automata Learning and Inductive Inference

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12234))

Included in the following conference series:

  • 1604 Accesses

Abstract

Safety LTL properties are ubiquitous in the verification of safety critical systems. There is already evidence that translating safety properties into DFA rather than Büchi automata results in faster verification times. Conventional translation strategies can in some cases use unnecessarily large amounts of resources. We develop a symbolic adaptation of the \(L^*\) active learning algorithm tailored to efficiently translate safety LTL properties into symbolic DFA. We demonstrate how an inductive inference procedure can be used to provide additional input to the algorithm that greatly improves performance for certain important families of properties. For completeness, we also provide an outline and examples of how such a procedure can be implemented. Finally, we compare with state of the art LTL translators and provide experimental evidence where our approach significantly outperforms conventional translation strategies.

This work was partially supported by the Irish Development Agency (IDA) for UTRC Ireland related to Network of Excellence in Aerospace Cyber Physical Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To be fair to Rabinizer, since it is implemented in Java, we deducted 0.4 seconds (the measured JVM startup time) from the elapsed time in all experiments with it.

  2. 2.

    Note that formulas of this kind with many (typically > 50) nested next operators, expressing timing requirements for FPGAs, appear very frequently in this domain.

References

  1. D programming language. https://dlang.org/

  2. Spot 1.0 benchmarks. https://www.lrde.epita.fr/~adl/ijccbs/

  3. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

    Chapter  Google Scholar 

  4. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126 (1987)

    Article  Google Scholar 

  5. Alur, R., et al.: Syntax-guided synthesis. In: 2013 Formal Methods in Computer-Aided Design, pp. 1–8, October 2013

    Google Scholar 

  6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  7. Angluin, D., Fisman, D.: Learning regular omega languages. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2014. LNCS (LNAI), vol. 8776, pp. 125–139. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11662-4_10

    Chapter  MATH  Google Scholar 

  8. Babiak, T., Kretínský, M., Rehák, V., Strejcek, J.: LTL to Büchi automata translation: fast and more deterministic. CoRR, abs/1201.0682 (2012)

    Google Scholar 

  9. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

    Chapter  Google Scholar 

  10. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. Formal Methods Syst. Des. 10(1), 47–71 (1997)

    Article  Google Scholar 

  11. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In: CAV (2017)

    Google Scholar 

  12. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  13. Drews, S., D’Antoni, L.: Learning symbolic automata. In: TACAS (2017)

    Google Scholar 

  14. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the propositional Mu-Calculus (Extended Abstract). In: LICS (1986)

    Google Scholar 

  15. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_6

    Chapter  Google Scholar 

  16. Geilen, M.: On the construction of monitors for temporal logic properties. Electron. Notes Theoret. Comput. Sci. 55(2), 181–199 (2001). RV 2001, Runtime Verification (in connection with CAV 2001)

    Google Scholar 

  17. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_19

    Chapter  Google Scholar 

  18. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  19. Křetínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_30

    Chapter  Google Scholar 

  20. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst. Des. 19(3), 291–314 (2001)

    Article  Google Scholar 

  21. Latvala, T.: Efficient model checking of safety properties. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 74–88. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2_5

    Chapter  MATH  Google Scholar 

  22. Maler, O., Mens, I.-E.: Learning regular languages over large alphabets. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 485–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_41

    Chapter  Google Scholar 

  23. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. In: Proceedings of the Fourth Annual Workshop on Computational Learning Theory, COLT 1991, San Francisco, CA, USA, pp. 128–138. Morgan Kaufmann Publishers Inc. (1991)

    Google Scholar 

  24. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-0931-7

    Book  MATH  Google Scholar 

  25. Rozier, K.Y.: Survey: linear temporal logic symbolic model checking. Comput. Sci. Rev. 5(2), 163–203 (2011)

    Article  Google Scholar 

  26. Sebastiani, R., Tonetta, S.: “More deterministic” vs. “Smaller” Buchi automata for efficient LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39724-3_12

    Chapter  Google Scholar 

  27. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_14

    Chapter  Google Scholar 

  28. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput. 6(5), 495–511 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Giantamidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giantamidis, G., Basagiannis, S., Tripakis, S. (2020). Efficient Translation of Safety LTL to DFA Using Symbolic Automata Learning and Inductive Inference. In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2020. Lecture Notes in Computer Science(), vol 12234. Springer, Cham. https://doi.org/10.1007/978-3-030-54549-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54549-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54548-2

  • Online ISBN: 978-3-030-54549-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics