Skip to main content

Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response

  • Chapter
  • First Online:
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1287))

Abstract

The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and metalloproteinase

AE:

AML1/ETO

AE9a:

AML1/ETO 9a

AEtr:

AML1/ETO truncated

AF9:

ALL1-fused gene from chromosome 9 protein

AMKL:

Acute megakaryoblastic leukemia

AML:

Acute myeloid leukemia

AML1:

Acute myeloid leukemia 1

ANKs:

Ankyrin repeats

B-ALL:

B-cell acute lymphoblastic leukemia

CARM1:

Coactivator-associated arginine methyltransferase 1

CBF1:

C promoter-binding factor 1

CBFβ:

Core-binding factor β

CDK8:

Cyclin-dependent kinase 8

CKII:

Casein kinase II

CLL:

Chronic lymphocytic leukemia

CoA:

Coactivator

CoR:

Corepressor

CSL:

Homo sapiens CBF1, Drosophila melanogaster Suppressor of Hairless, and Caenorhabditis elegans Lag-1

CtBP:

C-terminal-binding protein

CtIP:

CtBP-interacting protein

DDX5:

DEAD-box helicase 5

DLBCL:

Diffuse large B-cell lymphoma

DLL1:

DELTA-LIKE 1

DLL4:

DELTA-LIKE 4

dnMAML1:

dominant-negative MAML1

EBNA2:

Epstein-Barr virus nuclear antigen 2

EGR2 :

Early growth response 2

Ep300:

E1A-binding protein P300

Ep400:

E1A-binding protein P400

ESCs:

Embryonic stem cells

ETO:

Eight-twenty-one

FBXW7:

F-Box and WD repeat domain-containing 7

FHL1C:

Four-and-a-half LIM domain protein 1C

FLT3:

FMS-like tyrosine kinase 3

GCN5:

General control of amino acid synthesis protein 5-like 2

GoF:

Gain of function

GSI:

γ-secretase inhibitor

H2A.Zac:

H2A.Z acetylation

HAT:

Histone acetyltransferase

HD:

heterodimerization domain

HDACs:

Histone deacetylases

Hes1 :

Hairy and Enhancer of Split 1

HPCs:

Hematopoietic progenitor cells

KAT:

lysine acetyltransferase

KAT2A:

lysine acetyltransferase 2A

KAT2B:

lysine acetyltransferase 2B

KAT3B:

lysine acetyltransferase 3B

KAT5:

lysine acetyltransferase 5

KBF2:

H-2 K binding factor-2

KDM1A:

lysine demethylase 1A

KDM5A:

lysine demethylase 5A

KDM7B:

lysine demethylase 7B

KMT2A:

lysine-specific methyltransferase 2A

KMT2D:

lysine-specific methyltransferase 2D

L3MBTL3:

lethal (3) malignant brain tumor-like protein 3

LID:

Little imaginal discs

LoF:

Loss of function

LSD1:

lysine-specific demethylase 1

Lz:

Lozenge

MAL:

Megakaryocytic acute leukemia

MAM:

Mastermind

MAML:

Mastermind-like

MCL:

Mantle cell lymphomas

MINT:

MSX2-interacting protein

MKL1:

Megakaryoblastic leukemia 1

MLL:

Mixed-lineage leukemia

MS:

Mass spectrometry

MTG16:

Myeloid translocation gene on chromosome 16 protein

MTG8:

Myeloid translocation gene on 8q22

MTGR1:

Myeloid translocation gene-related protein 1

NACK:

Notch activation complex kinase

NCoR:

Nuclear receptor corepressor

NFAT:

Nuclear factor of activated T-cells

NF-κB1:

Nuclear factor kappa B subunit 1

NHR:

Nervy homology regions

NICD:

NOTCH intracellular domain

NICD1:

NOTCH1 intracellular domain 1

NK:

Natural killer

OTT:

One twenty-two

PCAF:

Ep300-CBP-associated factors

PEST:

Proline, glutamic acid, serine, and threonine

PHF8:

PHD finger protein 8

PRMT4:

Protein arginine methyltransferase 4

PTMs:

Posttranslational modifications

RBM15:

RNA-binding motif protein 15

RBPID:

RBPJ-interacting domain

RBPJ:

Recombination signal-binding protein for immunoglobulin kappa J region

RBS:

RBPJ-binding sites

RHD:

Runt homology domain

Runx:

Runt-related transcription factor

RUNX1:

Runt-related transcription factor 1

SHARP:

SMRT and HDACs-associated repressor protein

SMRT:

Silencing mediator for retinoid and thyroid receptor

SMZL:

Splenic marginal zone lymphomas

Spen:

split ends

SPOC:

Spen paralog and ortholog C-terminal

SPOCome:

SPOC interactome

SRA :

Steroid receptor coactivator

SuH:

Suppressor of Hairless

TAD:

Transactivation domain

T-ALL:

T-cell acute lymphoblastic leukemia

TFs:

transcription factors

Tip60:

HIV-1 Tat-interactive protein, 60 kDa

UTR:

Untranslated region

WT:

Wild type

ZnF:

Zinc fingers

References

  • Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E, Casciari C et al (2003) Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 112:1751–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnett KL, Hass M, McArthur DG, Ilagan MX, Aster JC, Kopan R, Blacklow SC (2010) Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nat Struct Mol Biol 17:1312–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augert A, Eastwood E, Ibrahim AH, Wu N, Grunblatt E, Basom R, Liggitt D, Eaton KD, Martins R, Poirier JT et al (2019) Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci Signal 12

    Google Scholar 

  • Bea S, Valdes-Mas R, Navarro A, Salaverria I, Martin-Garcia D, Jares P, Gine E, Pinyol M, Royo C, Nadeu F et al (2013) Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A 110:18250–18255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borggrefe T, Liefke R (2012) Fine-tuning of the intracellular canonical Notch signaling pathway. Cell Cycle 11:264–276

    Article  CAS  PubMed  Google Scholar 

  • Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66:1631–1646

    Article  CAS  PubMed  Google Scholar 

  • Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD (2016) The notch intracellular domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. Biochim Biophys Acta 1863:303–313

    Article  CAS  PubMed  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  CAS  PubMed  Google Scholar 

  • Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G, Happich M, Muckenthaler MU, Kulozik AE (2006) Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 108:1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Brou C, Logeat F, Lecourtois M, Vandekerckhove J, Kourilsky P, Schweisguth F, Israel A (1994) Inhibition of the DNA-binding activity of Drosophila suppressor of hairless and of its human homolog, KBF2/RBP-J kappa, by direct protein-protein interaction with Drosophila hairless. Genes Dev 8:2491–2503

    Article  CAS  PubMed  Google Scholar 

  • Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG (2013) Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev 27:1059–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins KJ, Yuan Z, Kovall RA (2014) Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling. Structure 22:70–81

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano L, Walker JA, Burgio G, Corona DF, Mulligan P, Naar AM, Dyson NJ (2011) Functional antagonism between histone H3K4 demethylases in vivo. Genes Dev 25:17–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dieguez-Hurtado R, Kato K, Giaimo BD, Nieminen-Kelha M, Arf H, Ferrante F, Bartkuhn M, Zimmermann T, Bixel MG, Eilken HM et al (2019) Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun 10:2817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dreval K, Lake RJ, Fan HY (2019) HDAC1 negatively regulates selective mitotic chromatin binding of the Notch effector RBPJ in a KDM5A-dependent manner. Nucleic Acids Res 47:4521–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661

    Article  CAS  PubMed  Google Scholar 

  • Engel ME, Nguyen HN, Mariotti J, Hunt A, Hiebert SW (2010) Myeloid translocation gene 16 (MTG16) interacts with Notch transcription complex components to integrate Notch signaling in hematopoietic cell fate specification. Mol Cell Biol 30:1852–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80:1825–1831

    Article  CAS  PubMed  Google Scholar 

  • Erickson PF, Dessev G, Lasher RS, Philips G, Robinson M, Drabkin HA (1996) ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood 88:1813–1823

    Article  CAS  PubMed  Google Scholar 

  • Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, Grunn A, Fangazio M, Capello D, Monti S et al (2011) Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 208:1389–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbri G, Holmes AB, Viganotti M, Scuoppo C, Belver L, Herranz D, Yan XJ, Kieso Y, Rossi D, Gaidano G et al (2017) Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 114:E2911–E2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falo-Sanjuan J, Lammers NC, Garcia HG, Bray SJ (2019) Enhancer priming enables fast and sustained transcriptional responses to Notch signaling. Dev Cell 2019 Aug 19;50(4):411–425

    Google Scholar 

  • Feinstein PG, Kornfeld K, Hogness DS, Mann RS (1995) Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics 140:573–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feyerabend TB, Terszowski G, Tietz A, Blum C, Luche H, Gossler A, Gale NW, Radtke F, Fehling HJ, Rodewald HR (2009) Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30:67–79

    Article  CAS  PubMed  Google Scholar 

  • Fortini ME, Artavanis-Tsakonas S (1994) The suppressor of hairless protein participates in notch receptor signaling. Cell 79:273–282

    Article  CAS  PubMed  Google Scholar 

  • Franco CB, Scripture-Adams DD, Proekt I, Taghon T, Weiss AH, Yui MA, Adams SL, Diamond RA, Rothenberg EV (2006) Notch/Delta signaling constrains reengineering of pro-T cells by PU.1. Proc Natl Acad Sci U S A 103:11993–11998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD (1995) The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11:2667–2674

    CAS  PubMed  Google Scholar 

  • Friedmann DR, Wilson JJ, Kovall RA (2008) RAM-induced allostery facilitates assembly of a notch pathway active transcription complex. J Biol Chem 283:14781–14791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA (2002) Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16:1397–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520

    Article  CAS  PubMed  Google Scholar 

  • Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y, Nagase T, Yokoyama Y, Ohki M (1998) The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood 91:4028–4037

    Article  CAS  PubMed  Google Scholar 

  • Gardini A, Cesaroni M, Luzi L, Okumura AJ, Biggs JR, Minardi SP, Venturini E, Zhang DE, Pelicci PG, Alcalay M (2008) AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet 4:e1000275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geimer Le Lay AS, Oravecz A, Mastio J, Jung C, Marchal P, Ebel C, Dembele D, Jost B, Le Gras S, Thibault C et al (2014) The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Sci Signal 7:ra28

    Article  PubMed  CAS  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18:7185–7191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevry N, Chan HM, Laflamme L, Livingston DM, Gaudreau L (2007) p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev 21:1869–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevry N, Hardy S, Jacques PE, Laflamme L, Svotelis A, Robert F, Gaudreau L (2009) Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev 23:1522–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaimo BD, Borggrefe T (2018) Introduction to molecular mechanisms in Notch signal transduction and disease pathogenesis. Adv Exp Med Biol 1066:3–30

    Article  CAS  PubMed  Google Scholar 

  • Giaimo BD, Ferrante F, Borggrefe T (2017a) Chromatin immunoprecipitation (ChIP) in mouse T-cell lines. J Vis Exp

    Google Scholar 

  • Giaimo BD, Oswald F, Borggrefe T (2017b) Dynamic chromatin regulation at Notch target genes. Transcription 8:61–66

    Article  CAS  PubMed  Google Scholar 

  • Giaimo BD, Ferrante F, Vallejo DM, Hein K, Gutierrez-Perez I, Nist A, Stiewe T, Mittler G, Herold S, Zimmermann T et al (2018) Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response. Nucleic Acids Res 46:8197–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaimo BD, Ferrante F, Herchenrother A, Hake SB, Borggrefe T (2019) The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Lamarca MJ, Falo-Sanjuan J, Stojnic R, Abdul Rehman S, Muresan L, Jones ML, Pillidge Z, Cerda-Moya G, Yuan Z, Baloul S et al (2018) Activation of the notch signaling pathway in vivo elicits changes in CSL nuclear dynamics. Dev Cell 44:611–623 e617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T et al (2007) Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol 14:1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Grossman SR, Johannsen E, Tong X, Yalamanchili R, Kieff E (1994) The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci U S A 91:7568–7572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guruharsha KG, Hori K, Obar RA, Artavanis-Tsakonas S (2014) Proteomic analysis of the Notch interactome. Methods Mol Biol 1187:181–192

    Article  CAS  PubMed  Google Scholar 

  • Hamaguchi Y, Matsunami N, Yamamoto Y, Honjo T (1989) Purification and characterization of a protein that binds to the recombination signal sequence of the immunoglobulin J kappa segment. Nucleic Acids Res 17:9015–9026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, Ikuta K, Honjo T (2002) Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14:637–645

    Article  CAS  PubMed  Google Scholar 

  • Hass MR, Liow HH, Chen X, Sharma A, Inoue YU, Inoue T, Reeb A, Martens A, Fulbright M, Raju S et al (2015) SpDamID: marking DNA bound by protein complexes identifies Notch-dimer responsive enhancers. Mol Cell 59:685–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heibert SW, Lutterbach B, Durst K, Wang L, Linggi B, Wu S, Wood L, Amann J, King D, Hou Y (2001) Mechanisms of transcriptional repression by the t(8;21)-, t(12;21)-, and inv(16)-encoded fusion proteins. Cancer Chemother Pharmacol 48(Suppl 1):S31–S34

    Article  PubMed  Google Scholar 

  • Hein K, Mittler G, Cizelsky W, Kuhl M, Ferrante F, Liefke R, Berger IM, Just S, Strang JE, Kestler HA et al (2015) Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response. Sci Signal 8:ra30

    Article  PubMed  CAS  Google Scholar 

  • Henkel T, Ling PD, Hayward SD, Peterson MG (1994) Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265:92–95

    Article  CAS  PubMed  Google Scholar 

  • Ho DM, Guruharsha KG, Artavanis-Tsakonas S (2018) The Notch Interactome: complexity in signaling circuitry. Adv Exp Med Biol 1066:125–140

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y (2001) Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 20:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt A, Fischer M, Engel ME, Hiebert SW (2011) Mtg16/Eto2 contributes to murine T-cell development. Mol Cell Biol 31:2544–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurtado C, Safarova A, Smith M, Chung R, Bruyneel AAN, Gomez-Galeno J, Oswald F, Larson CJ, Cashman JR, Ruiz-Lozano P et al (2019) Disruption of NOTCH signaling by a small molecule inhibitor of the transcription factor RBPJ. Sci Rep 9:10811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Izon DJ, Aster JC, He Y, Weng A, Karnell FG, Patriub V, Xu L, Bakkour S, Rodriguez C, Allman D, Pear WS (2002) Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16:231–243

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Zhou W, Han X, Wang Z, Li B, Jeffries S, Tao W, Robbins DJ, Capobianco AJ (2017) Acetylation of mastermind-like 1 by p300 drives the recruitment of NACK to initiate Notch-dependent transcription. Cancer Res 77:4228–4237

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Mittler G, Oswald F, Borggrefe T (2013) RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim Biophys Acta 1833:1180–1189

    Article  CAS  PubMed  Google Scholar 

  • Kannan S, Fang W, Song G, Mullighan CG, Hammitt R, McMurray J, Zweidler-McKay PA (2011) Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression. Blood 117:2891–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM, Akers LJ, Hammitt RA, McMurray JS, Kornblau SM et al (2013) Notch activation inhibits AML growth and survival: a potential therapeutic approach. J Exp Med 210:321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato T, Sakata-Yanagimoto M, Nishikii H, Ueno M, Miyake Y, Yokoyama Y, Asabe Y, Kamada Y, Muto H, Obara N et al (2015) Hes1 suppresses acute myeloid leukemia development through FLT3 repression. Leukemia 29:576–585

    Article  CAS  PubMed  Google Scholar 

  • Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K, Nomura N, Hayashi Y, Ohki M (1998) The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol 18:846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa M, Oyama T, Kawashima T, Yedvobnick B, Kumar A, Matsuno K, Harigaya K (2001) A human protein with sequence similarity to Drosophila mastermind coordinates the nuclear form of notch and a CSL protein to build a transcriptional activator complex on target promoters. Mol Cell Biol 21:4337–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochert K, Ullrich K, Kreher S, Aster JC, Kitagawa M, Johrens K, Anagnostopoulos I, Jundt F, Lamprecht B, Zimber-Strobl U et al (2011) High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas. Oncogene 30:1831–1840

    Article  CAS  PubMed  Google Scholar 

  • Kovall RA, Hendrickson WA (2004) Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 23:3441–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozu T, Miyoshi H, Shimizu K, Maseki N, Kaneko Y, Asou H, Kamada N, Ohki M (1993) Junctions of the AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction. Blood 82:1270–1276

    Article  CAS  PubMed  Google Scholar 

  • Krejci A, Bray S (2007) Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev 21:1322–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S et al (2012) Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119:1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Kurooka H, Honjo T (2000) Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem 275:17211–17220

    Article  CAS  PubMed  Google Scholar 

  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR 3rd, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087

    Article  CAS  PubMed  Google Scholar 

  • Kwok C, Zeisig BB, Qiu J, Dong S, So CW (2009) Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci U S A 106:2853–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok C, Zeisig BB, Dong S, So CW (2010) The role of CBFbeta in AML1-ETO’s activity. Blood 115:3176–3177

    Article  CAS  PubMed  Google Scholar 

  • Laiosa CV, Stadtfeld M, Xie H, de Andres-Aguayo L, Graf T (2006) Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 25:731–744

    Article  CAS  PubMed  Google Scholar 

  • Larson Gedman A, Chen Q, Kugel Desmoulin S, Ge Y, LaFiura K, Haska CL, Cherian C, Devidas M, Linda SB, Taub JW, Matherly LH (2009) The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia 23:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Chang J, Lynch SJ, Lukac DM, Ganem D (2002) The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev 16:1977–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang L, Zhang HW, Liang J, Niu XL, Zhang SZ, Feng L, Liang YM, Han H (2008) KyoT3, an isoform of murine FHL1, associates with the transcription factor RBP-J and represses the RBP-J-mediated transactivation. Biochim Biophys Acta 1779:805–810

    Article  CAS  PubMed  Google Scholar 

  • Liefke R, Oswald F, Alvarado C, Ferres-Marco D, Mittler G, Rodriguez P, Dominguez M, Borggrefe T (2010) Histone demethylase KDM5A is an integral part of the core Notch-RBP-J repressor complex. Genes Dev 24:590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SE, Oyama T, Nagase T, Harigaya K, Kitagawa M (2002) Identification of new human mastermind proteins defines a family that consists of positive regulators for notch signaling. J Biol Chem 277:50612–50620

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Tian L, Shen H, Gu Y, Li JL, Chen Z, Sun X, You MJ, Wu L (2013) DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. Oncogene 32:4845–4853

    Article  CAS  PubMed  Google Scholar 

  • Ling PD, Rawlins DR, Hayward SD (1993) The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci U S A 90:9237–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen W, Gaudet J, Cheney MD, Roudaia L, Cierpicki T, Klet RC, Hartman K, Laue TM, Speck NA, Bushweller JH (2007) Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO’s activity. Cancer Cell 11:483–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobry C, Ntziachristos P, Ndiaye-Lobry D, Oh P, Cimmino L, Zhu N, Araldi E, Hu W, Freund J, Abdel-Wahab O et al (2013) Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med 210:301–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutterbach B, Sun D, Schuetz J, Hiebert SW (1998a) The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol Cell Biol 18:3604–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG et al (1998b) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18:7176–7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Renda MJ, Wang L, Cheng EC, Niu C, Morris SW, Chi AS, Krause DS (2007) Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation. Mol Cell Biol 27:3056–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillard I, Weng AP, Carpenter AC, Rodriguez CG, Sai H, Xu L, Allman D, Aster JC, Pear WS (2004) Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104:1696–1702

    Article  CAS  PubMed  Google Scholar 

  • Malecki MJ, Sanchez-Irizarry C, Mitchell JL, Histen G, Xu ML, Aster JC, Blacklow SC (2006) Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol 26:4642–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour MR, Linch DC, Foroni L, Goldstone AH, Gale RE (2006) High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 20:537–539

    Article  CAS  PubMed  Google Scholar 

  • Mercher T, Raffel GD, Moore SA, Cornejo MG, Baudry-Bluteau D, Cagnard N, Jesneck JL, Pikman Y, Cullen D, Williams IR et al (2009) The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. J Clin Invest 119:852–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metzler M, Staege MS, Harder L, Mendelova D, Zuna J, Fronkova E, Meyer C, Flohr T, Bednarova D, Harbott J et al (2008) Inv(11)(q21q23) fuses MLL to the Notch co-activator mastermind-like 2 in secondary T-cell acute lymphoblastic leukemia. Leukemia 22:1807–1811

    Article  CAS  PubMed  Google Scholar 

  • Mikami S, Kanaba T, Ito Y, Mishima M (2013) NMR assignments of SPOC domain of the human transcriptional corepressor SHARP in complex with a C-terminal SMRT peptide. Biomol NMR Assign 7:267–270

    Article  CAS  PubMed  Google Scholar 

  • Mikami S, Kanaba T, Takizawa N, Kobayashi A, Maesaki R, Fujiwara T, Ito Y, Mishima M (2014) Structural insights into the recruitment of SMRT by the corepressor SHARP under phosphorylative regulation. Structure 22:35–46

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M (1993) The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 12:2715–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshkin YM, Kan TW, Goodfellow H, Bezstarosti K, Maeda RK, Pilyugin M, Karch F, Bray SJ, Demmers JA, Verrijzer CP (2009) Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol Cell 35:782–793

    Article  CAS  PubMed  Google Scholar 

  • Mulligan P, Yang F, Di Stefano L, Ji JY, Ouyang J, Nishikawa JL, Toiber D, Kulkarni M, Wang Q, Najafi-Shoushtari SH et al (2011) A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell 42:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam Y, Sliz P, Song L, Aster JC, Blacklow SC (2006) Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124:973–983

    Article  CAS  PubMed  Google Scholar 

  • Nam Y, Sliz P, Pear WS, Aster JC, Blacklow SC (2007) Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proc Natl Acad Sci U S A 104:2103–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisson PE, Watkins PC, Sacchi N (1992) Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genet Cytogenet 63:81–88

    Article  CAS  PubMed  Google Scholar 

  • Nwabo Kamdje AH, Bassi G, Pacelli L, Malpeli G, Amati E, Nichele I, Pizzolo G, Krampera M (2012) Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy. Blood Cancer J 2:e73

    Article  CAS  PubMed  Google Scholar 

  • Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K (1993a) Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 194:314–331

    Article  CAS  PubMed  Google Scholar 

  • Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y (1993b) PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A 90:6859–6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada H, Watanabe T, Niki M, Takano H, Chiba N, Yanai N, Tani K, Hibino H, Asano S, Mucenski ML et al (1998) AML1(−/−) embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene 17:2287–2293

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    Article  CAS  PubMed  Google Scholar 

  • Oswald F, Kovall RA (2018) CSL-associated corepressor and coactivator complexes. Adv Exp Med Biol 1066:279–295

    Article  CAS  PubMed  Google Scholar 

  • Oswald F, Tauber B, Dobner T, Bourteele S, Kostezka U, Adler G, Liptay S, Schmid RM (2001) p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol Cell Biol 21:7761–7774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knochel W et al (2002) SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J 21:5417–5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald F, Winkler M, Cao Y, Astrahantseff K, Bourteele S, Knochel W, Borggrefe T (2005) RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol Cell Biol 25:10379–10390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald F, Rodriguez P, Giaimo BD, Antonello ZA, Mira L, Mittler G, Thiel VN, Collins KJ, Tabaja N, Cizelsky W et al (2016) A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes. Nucleic Acids Res 44:4703–4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomero T, Barnes KC, Real PJ, Glade Bender JL, Sulis ML, Murty VV, Colovai AI, Balbin M, Ferrando AA (2006) CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia 20:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Park S, Speck NA, Bushweller JH (2009) The role of CBFbeta in AML1-ETO’s activity. Blood 114:2849–2850

    Article  CAS  PubMed  Google Scholar 

  • Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, Baltimore D (1996) Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183:2283–2291

    Article  CAS  PubMed  Google Scholar 

  • Petrovic J, Zhou Y, Fasolino M, Goldman N, Schwartz GW, Mumbach MR, Nguyen SC, Rome KS, Sela Y, Zapataro Z et al (2019) Oncogenic Notch promotes long-range regulatory interactions within Hyperconnected 3D cliques. Mol Cell 2019 Mar 21;73(6):1174–1190

    Google Scholar 

  • Pillidge Z, Bray SJ (2019) SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility. EMBO Rep 2019 May;20(5):e46944

    Google Scholar 

  • Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF et al (2017) Dll4 and notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19:915–927

    Article  CAS  PubMed  Google Scholar 

  • Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI, Munar M, Rubio-Perez C, Jares P, Aymerich M et al (2015) Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526:519–524

    Article  CAS  PubMed  Google Scholar 

  • Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S, Lee JY, Kadesch T, Hardy RR, Aster JC, Pear WS (1999) Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11:299–308

    Article  CAS  PubMed  Google Scholar 

  • Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, Aguet M (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10:547–558

    Article  CAS  PubMed  Google Scholar 

  • Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, Bartoli A, Coaccioli S, Screpanti I, Marconi P (2009) Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113:856–865

    Article  CAS  PubMed  Google Scholar 

  • Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Fama R et al (2012) The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med 209:1537–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudaia L, Cheney MD, Manuylova E, Chen W, Morrow M, Park S, Lee CT, Kaur P, Williams O, Bushweller JH, Speck NA (2009) CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood 113:3070–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RJH, Petrovic J, Rausch DM, Zhou Y, Lareau CA, Kluk MJ, Christie AL, Lee WY, Tarjan DR, Guo B et al (2017) A B cell Regulome links Notch to downstream oncogenic pathways in small B cell lymphomas. Cell Rep 21:784–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salat D, Liefke R, Wiedenmann J, Borggrefe T, Oswald F (2008) ETO, but not leukemogenic fusion protein AML1/ETO, augments RBP-Jkappa/SHARP-mediated repression of notch target genes. Mol Cell Biol 28:3502–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt TM, Zuniga-Pflucker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17:749–756

    Article  CAS  PubMed  Google Scholar 

  • Schmitt TM, Ciofani M, Petrie HT, Zuniga-Pflucker JC (2004a) Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 200:469–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt TM, de Pooter RF, Gronski MA, Cho SK, Ohashi PS, Zuniga-Pflucker JC (2004b) Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol 5:410–417

    Article  CAS  PubMed  Google Scholar 

  • Severson E, Arnett KL, Wang H, Zang C, Taing L, Liu H, Pear WS, Shirley Liu X, Blacklow SC, Aster JC (2017) Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells. Sci Signal 2017 May 2;10(477):eaag1598

    Google Scholar 

  • Skalska L, Stojnic R, Li J, Fischer B, Cerda-Moya G, Sakai H, Tajbakhsh S, Russell S, Adryan B, Bray SJ (2015) Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J 34:1889–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabaja N, Yuan Z, Oswald F, Kovall RA (2017) Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes. J Biol Chem 292:10549–10563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M et al (2001) Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 104:755–767

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi Y, Furukawa T, Tun T, Han H, Honjo T (1998) LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Mol Cell Biol 18:644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terriente-Felix A, Li J, Collins S, Mulligan A, Reekie I, Bernard F, Krejci A, Bray S (2013) Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development 140:926–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetzlaff F, Fischer A (2018) Control of blood vessel formation by Notch signaling. Adv Exp Med Biol 1066:319–338

    Article  CAS  PubMed  Google Scholar 

  • Thiel VN, Giaimo BD, Schwarz P, Soller K, Vas V, Bartkuhn M, Blatte TJ, Dohner K, Bullinger L, Borggrefe T et al (2017) Heterodimerization of AML1/ETO with CBFbeta is required for leukemogenesis but not for myeloproliferation. Leukemia 31:2491–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Tang Y, Wang T, Yu Y, Wang X, Wang Y, Zhang Y (2015a) HES1 is an independent prognostic factor for acute myeloid leukemia. Onco Targets Ther 8:899–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Yu Y, Jia Y, Zhu L, Zhang Y (2015b) HES1 activation suppresses proliferation of leukemia cells in acute myeloid leukemia. Ann Hematol 94:1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Tottone L, Zhdanovskaya N, Carmona Pestana A, Zampieri M, Simeoni F, Lazzari S, Ruocco V, Pelullo M, Caiafa P, Felli MP et al (2019) Histone modifications drive aberrant Notch3 expression/activity and growth in T-ALL. Front Oncol 9:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Tun T, Hamaguchi Y, Matsunami N, Furukawa T, Honjo T, Kawaichi M (1994) Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res 22:965–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayaraghavan J, Osborne BA (2018) Notch and T cell function – a complex tale. Adv Exp Med Biol 1066:339–354

    Article  CAS  PubMed  Google Scholar 

  • Wacker SA, Alvarado C, von Wichert G, Knippschild U, Wiedenmann J, Clauss K, Nienhaus GU, Hameister H, Baumann B, Borggrefe T et al (2011) RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J. EMBO J 30:43–56

    Article  CAS  PubMed  Google Scholar 

  • Wallberg AE, Pedersen K, Lendahl U, Roeder RG (2002) p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 22:7812–7819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltzer L, Logeat F, Brou C, Israel A, Sergeant A, Manet E (1994) The human J kappa recombination signal sequence binding protein (RBP-J kappa) targets the Epstein-Barr virus EBNA2 protein to its DNA responsive elements. EMBO J 13:5633–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93:3444–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A 95:10860–10865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H, Pear WS, Schug J, Blacklow SC, Arnett KL et al (2011) Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A 108:14908–14913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zang C, Taing L, Arnett KL, Wong YJ, Pear WS, Blacklow SC, Liu XS, Aster JC (2014) NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc Natl Acad Sci U S A 111:705–710

    Article  CAS  PubMed  Google Scholar 

  • Weaver KL, Alves-Guerra MC, Jin K, Wang Z, Han X, Ranganathan P, Zhu X, DaSilva T, Liu W, Ratti F et al (2014) NACK is an integral component of the Notch transcriptional activation complex and is critical for development and tumorigenesis. Cancer Res 74:4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris JP t, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  CAS  PubMed  Google Scholar 

  • Wilson JJ, Kovall RA (2006) Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124:985–996

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, MacDonald HR, Radtke F (2001) Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 194:1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD (2000) MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26:484–489

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Sun T, Kobayashi K, Gao P, Griffin JD (2002) Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 22:7688–7700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Wu Q, Kim L, Miller TE, Liau BB, Mack SC, Yang K, Factor DC, Fang X, Huang Z et al (2016) RBPJ maintains brain tumor-initiating cells through CDK9-mediated transcriptional elongation. J Clin Invest 126:2757–2772

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu T, Park SS, Giaimo BD, Hall D, Ferrante F, Ho DM, Hori K, Anhezini L, Ertl I, Bartkuhn M et al (2017) RBPJ/CBF1 interacts with L3MBTL3/MBT1 to promote repression of Notch signaling via histone demethylase KDM1A/LSD1. EMBO J 36:3232–3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Burel SA, Peterson LF, Kanbe E, Iwasaki H, Boyapati A, Hines R, Akashi K, Zhang DE (2004) Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci U S A 101:17186–17191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y, Chen IM, Chen Z, Rowley JD, Willman CL, Zhang DE (2006) A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 12:945–949

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Ahn EY, Hiebert SW, Zhang DE (2009) RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis. Blood 113:883–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashiro-Ohtani Y, Wang H, Zang C, Arnett KL, Bailis W, Ho Y, Knoechel B, Lanauze C, Louis L, Forsyth KS et al (2014) Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc Natl Acad Sci U S A 111:E4946–E4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatim A, Benne C, Sobhian B, Laurent-Chabalier S, Deas O, Judde JG, Lelievre JD, Levy Y, Benkirane M (2012) NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol Cell 48:445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Q, Jiang J, Zhan G, Yan W, Huang L, Hu Y, Su H, Tong Q, Yue M, Li H et al (2016) Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia. Sci Rep 6:26510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo JY, Choi HK, Choi KC, Park SY, Ota I, Yook JI, Lee YH, Kim K, Yoon HG (2012) Nuclear hormone receptor corepressor promotes esophageal cancer cell invasion by transcriptional repression of interferon-gamma-inducible protein 10 in a casein kinase 2-dependent manner. Mol Biol Cell 23:2943–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo JY, Lim BJ, Choi HK, Hong SW, Jang HS, Kim C, Chun KH, Choi KC, Yoon HG (2013) CK2-NCoR signaling cascade promotes prostate tumorigenesis. Oncotarget 4:972–983

    Article  PubMed  PubMed Central  Google Scholar 

  • Young E, Noerenberg D, Mansouri L, Ljungstrom V, Frick M, Sutton LA, Blakemore SJ, Galan-Sousa J, Plevova K, Baliakas P et al (2017) EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia. Leukemia 31:1547–1554

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ, Burel SA, Lagasse E, Weissman IL, Akashi K, Zhang DE (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A 98:10398–10403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, VanderWielen BD, Giaimo BD, Pan L, Collins CE, Turkiewicz A, Hein K, Oswald F, Borggrefe T, Kovall RA (2019) Structural and functional studies of the RBPJ-SHARP complex reveal a conserved corepressor binding site. Cell Rep 26:845–854 e846

    Google Scholar 

  • Zhang J, Hug BA, Huang EY, Chen CW, Gelmetti V, Maccarana M, Minucci S, Pelicci PG, Lazar MA (2001) Oligomerization of ETO is obligatory for corepressor interaction. Mol Cell Biol 21:156–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Zou J, Wang H, Johannsen E, Peng CW, Quackenbush J, Mar JC, Morton CC, Freedman ML, Blacklow SC et al (2011) Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A 108:14902–14907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J, Gao XD, Chen B, Li JM, Xiong SM et al (2006) NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 12:3043–3049

    Article  CAS  PubMed  Google Scholar 

  • Zimber-Strobl U, Strobl LJ, Meitinger C, Hinrichs R, Sakai T, Furukawa T, Honjo T, Bornkamm GW (1994) Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J kappa, the homologue of Drosophila Suppressor of Hairless. EMBO J 13:4973–4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the collaborative research grant TRR81 and the Heisenberg program (BO 1639/5-1) by the DFG (German Research Foundation) and the Excellence Cluster for Cardio Pulmonary System (ECCPS) in Giessen to T.B. Funding for open access charge was provided by the DFG collaborative research TRR81. B.D.G. is supported by a Research Grant of the University Medical Center Giessen and Marburg (UKGM).

Competing Interests

The authors declare that they have no competing interests.

Consent for Publication

All authors have approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benedetto Daniele Giaimo or Tilman Borggrefe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giaimo, B.D., Gagliani, E.K., Kovall, R.A., Borggrefe, T. (2021). Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 1287. Springer, Cham. https://doi.org/10.1007/978-3-030-55031-8_2

Download citation

Publish with us

Policies and ethics