Skip to main content

KIDER: Knowledge-Infused Document Embedding Representation for Text Categorization

  • Conference paper
  • First Online:
Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12144))

  • 1943 Accesses

Abstract

Advancement of deep learning has improved performances on a wide variety of tasks. However, language reasoning and understanding remain difficult tasks in Natural Language Processing (NLP). In this work, we consider this problem and propose a novel Knowledge-Infused Document Embedding Representation (KIDER) for text categorization. We use knowledge patterns to generate high quality document representation. These patterns preserve categorical-distinctive semantic information, provide interpretability, and achieve superior performances at the same time. Experiments show that the KIDER model outperforms state-of-the-art methods on two important NLP tasks, i.e., emotion analysis and news topic detection, by 7% and 20%. In addition, we also demonstrate the potential of highlighting important information for each category and news using these patterns. These results show the value of knowledge-infused patterns in terms of interpretability and performance enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We empirically set the window size to 3, dimension of vector to 50, and epochs to 100.

References

  1. Aggarwal, C.C., Zhai, C.: Mining Text Data. Springer Science & Business Media, Heidelberg (2012)

    Book  Google Scholar 

  2. Wu, H., Salton, G.: A comparison of search term weighting: term relevance vs. inverse document frequency. In: ACM SIGIR Forum, vol. 16, pp. 30–39. ACM (1981)

    Google Scholar 

  3. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  4. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Lee, J.Y., Dernoncourt, F.: Sequential short-text classification with recurrent and convolutional neural networks. arXiv preprint arXiv:1603.03827 (2016)

  8. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  9. Alexander, J.A.: Template-based procedures for neural network interpretation. Ph.D. thesis, University of Colorado (1994)

    Google Scholar 

  10. Seidenberg, M.: Language at the Speed of Sight How We Read, Why So Many Can’t, and What Can Be Done About It, 1st edn. Basic Books, New York (2017)

    Google Scholar 

  11. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)

    Article  Google Scholar 

  12. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 363–370. Association for Computational Linguistic (2005)

    Google Scholar 

  13. Chen, K.J., Huang, S.L., Shih, Y.Y., Chen, Y.J.: Extended-Hownet: a representational framework for concepts. In: Proceedings of OntoLex 2005-Ontologies and Lexical Resources (2005)

    Google Scholar 

  14. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Comput. Linguist. 19(1), 61–74 (1993)

    Google Scholar 

  15. Chang, Y.C., Chu, C.H., Su, Y.C., Chen, C.C., Hsu, W.L.: PIPE: a BIOC module for protein-protein interaction passage extraction. Database (Oxford) 2016, baw101 (2016)

    Google Scholar 

  16. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  17. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)

    Google Scholar 

  18. Chang, Y.C., Chen, C.C., Hsieh, Y.L., Chen, C.C., Hsu, W.L.: Linguistic template extraction for recognizing reader-emotion and emotional resonance writing assistance. In: ACL, pp. 775–780 (2015)

    Google Scholar 

  19. Chang, Y.-C., Hsieh, Y.-L., Chen, C.-C., Hsu, W.-L.: A semantic frame-based intelligent agent for topic detection. Soft. Comput. 21(2), 391–401 (2015). https://doi.org/10.1007/s00500-015-1695-4

    Article  Google Scholar 

  20. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  21. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  22. Yogatama, D., Dyer, C., Ling, W., Blunsom, P.: Generative and discriminative text classification with recurrent neural networks. arXiv preprint arXiv:1703.01898 (2017)

  23. McCallum, A., Nigam, K.: A comparison of event models for Naïve Bayes text classification. In: AAAI/ICML-1998 Workshop on Learning for Text Categorization, pp. 41–48 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Chun Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, YT., Lin, ZW., Chang, YC., Hsu, WL. (2020). KIDER: Knowledge-Infused Document Embedding Representation for Text Categorization. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics