Skip to main content

Classification in X-Ray Testing

  • Chapter
  • First Online:
Computer Vision for X-Ray Testing

Abstract

In this chapter, we will cover known classifiers that can be used in X-ray testing. Several examples will be presented using Python. The reader can easily modify the proposed implementations in order to test different classification strategies. We will then present how to estimate the accuracy of a classifier using hold-out, cross-validation and leave-one-out. Finally, we will present an example that involves all steps of a pattern recognition problem, i.e., feature extraction, feature selection, classifier’s design, and evaluation. We will thus propose a general framework to design a computer vision system in order to select—automatically—from a large set of features and a bank of classifiers, those features and classifiers that can achieve the highest performance.

Ideal detection of a handgun superimposed onto a laptop (X-ray image \(\mathtt{B0019\_0001}\) colored with ‘sinmap’).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The available names of models are: (logistic regression), (Minimal Distance), (linear discriminant analysis), (quadratic discriminant analysis), (nearest neighbors), (random forest), (neural network), (AdaBoost), (SVM classifier with linear kernel), (SVM classifier with RBF kernel).

  2. 2.

    Usually, for this end we can use the accuracy metric explained in Sect. 6.3.

  3. 3.

    In pyxvis Library, this classifier is implemented using function with parameter .

  4. 4.

    For the configuration of Fig. 6.8 is .

  5. 5.

    In sklearn library, ‘gamma’ defines the influence of the single training examples, ‘C’ is like a regularization parameter in the optimization, and ‘degree’ is the the degree of the polynomial for SVM-POL. See https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html for further details.

  6. 6.

    There are some approaches that define the dictionary as the original samples (see Sparse Representation Classification (SRC) [26]), where \(\mathbf{D}_k = \mathbf{X}_k\).

  7. 7.

    The number of folds v can be another number, for instance 5-fold or 20-fold cross-validation estimate offers very similar performances. In our experiments, we use 10-fold cross-validation because it has become the standard method in practical terms [25].

References

  1. Bar, L., Sapiro, G.: Hierarchical dictionary learning for invariant classification. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3578–3581 (2010)

    Google Scholar 

  2. Bentley, J.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  Google Scholar 

  3. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (2005)

    Google Scholar 

  4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    Google Scholar 

  5. Boyd, K., Eng, K.H., Page, C.D.: Area under the precision-recall curve: point estimates and confidence intervals. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 451–466. Springer, Berlin (2013)

    Google Scholar 

  6. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Patt. Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  7. Carvajal, K., Chacón, M., Mery, D., Acuna, G.: Neural network method for failure detection with skewed class distribution. Insight 46(7), 399–402 (2004)

    Article  Google Scholar 

  8. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  9. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  10. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press Inc., San Diego (1990)

    Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Berlin (2009)

    Google Scholar 

  12. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Patt. Anal. Mach. Intell. 22(1), 4–37 (2000)

    Google Scholar 

  13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145. Citeseer (1995)

    Google Scholar 

  14. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: European Conference on Computer Vision, pp. 740–755. Springer, Berlin (2014)

    Google Scholar 

  15. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries for local image analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  16. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. Tech. Rep. 6652, INRIA (2008)

    Google Scholar 

  17. Mery, D., Bowyer, K.: Face recognition via adaptive sparse representations of random patches. In: IEEE Workshop on Information Forensics and Security (WIFS 2014) (2014)

    Google Scholar 

  18. Mery, D., Bowyer, K.: Recognition of facial attributes using adaptive sparse representations of random patches. In: 1st International Workshop on SoftBiometrics, in Conjunction with European Conference on Computer Vision (ECCV 2014) (2014)

    Google Scholar 

  19. Mery, D., Pedreschi, F., Soto, A.: Automated design of a computer vision system for visual food quality evaluation. Food Bioprocess Technol. 6(8), 2093–2108 (2013)

    Article  Google Scholar 

  20. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)

    Google Scholar 

  21. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  22. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press, Boca Raton (2003)

    Google Scholar 

  23. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: International Conference on Computer Vision (ICCV 2003), pp. 1470–1477 (2003)

    Google Scholar 

  24. Tosic, I., Frossard, P.: Dictionary learning. Signal Process. Mag. IEEE 28(2), 27–38 (2011)

    Article  Google Scholar 

  25. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, Burlington (2005)

    Google Scholar 

  26. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Mery .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mery, D., Pieringer, C. (2021). Classification in X-Ray Testing. In: Computer Vision for X-Ray Testing. Springer, Cham. https://doi.org/10.1007/978-3-030-56769-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56769-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56768-2

  • Online ISBN: 978-3-030-56769-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics