Skip to main content

Agent-Based Model of Heterogeneous T-Cell Activation in Vitro

  • Chapter
  • First Online:
Mathematical, Computational and Experimental T Cell Immunology
  • 789 Accesses

Abstract

We combine modelling and in vitro measurement of T-cell properties at the level of individual cells. Rather than seek to model kinetics using one differential equation per cell population, our computational model describes the dynamics of a cohort of cells in terms of a series of discrete events, one after the other, occurring to one cell at a time. Two types of heterogeneity are explicitly simulated: cell surface marker expression that is time-dependent and varies from cell to cell and spatial heterogeneity that arises from local influences such as the proximity of IL-2-producing cells. Neither storing 50,000 individual cell instances and their attributes nor following the kinetics over times of order 48 h and producing simulated flow cytometry plots, is too taxing for a modern desktop computer. In vitro, the kinetics of the activation of cohorts of CD4+ T cells from BALB/c mice was studied, under stimulus with soluble or plate-bound anti-CD3 or a combination of PMA and ionomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Permit number CAF/Ethics/216/2011.

References

  1. Almeida ARM, Borghans JAM, Freitas AA (2001) T cell homeostasis. J Exp Med 194(5):591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thomas-Vaslin V, Altes HK, de Boer RJ, Klatzmann D (2008) Comprehensive assessment and mathematical modeling of T cell population dynamics and homeostasis. J Immunol 180(4):2240

    Article  CAS  PubMed  Google Scholar 

  3. den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, de Boer AB, Willems N, Schrijver EHR, Spierenburg G, Gaiser K, Mul E, Otto SA, Ruiter AFC, Ackermans MT, Miedema F, Borghans JAM, de Boer RJ, Tesselaar K (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36(2):288–297

    Article  CAS  Google Scholar 

  4. Johnson PLF, Goronzy JJ, Antia R (2014) A population biological approach to understanding the maintenance and loss of the T-cell repertoire during aging. Immunology 142(2):167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hogan T, Gossel G, Yates AJ, Seddon B (2015) Temporal fate mapping reveals age-linked heterogeneity in naive T lymphocytes in mice. Proc Natl Acad Sci 112(50):E6917–E6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lythe G, Callard RE, Hoare RL, Molina-París C (2016) How many TCR clonotypes does a body maintain? J Theor Biol 389:214–224

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hogquist KA, Xing Y, Hsu F-C, Shapiro VS (2015) T cell adolescence: Maturation events beyond positive selection. J Immunol 195(4):1351–1357

    Article  CAS  PubMed  Google Scholar 

  8. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402

    Article  CAS  PubMed  Google Scholar 

  9. von Andrian UH, Mackay CR (2000) T-cell function and migration – two sides of the same coin. N Engl J Med 343(14):1020–1034

    Article  Google Scholar 

  10. Bousso P, Robey E (2003) Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4(6):579

    Article  CAS  PubMed  Google Scholar 

  11. Gett AV, Hodgkin PD (2000) A cellular calculus for signal integration by T cells. Nat Immunol 1(3):239–244

    Article  CAS  PubMed  Google Scholar 

  12. Cantrell DA, Smith KA et al (1984) The interleukin-2 T-cell system: a new cell growth model. Science 224(4655):1312–1316

    Article  CAS  PubMed  Google Scholar 

  13. Long M, Adler AJ (2006) Cutting edge: paracrine, but not autocrine, IL-2 signaling is sustained during early antiviral CD4 T cell response. J Immunol 177(7):4257–4261

    Article  CAS  PubMed  Google Scholar 

  14. Amado IF, Berges J, Luther RJ, Mailhé M-P, Garcia S, Bandeira A, Weaver C, Liston A, Freitas AA (2013) IL-2 coordinates IL-2–producing and regulatory T cell interplay. J Exp Med 210(12):2707–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12(3):180–190

    Article  CAS  PubMed  Google Scholar 

  16. Roychoudhuri R, Eil RL, Restifo NP (2015) The interplay of effector and regulatory T cells in cancer. Curr Opin Immunol 33:101–111

    Article  CAS  PubMed  Google Scholar 

  17. Grossman Z, Min B, Meier-Schellersheim M, Paul WE (2004) Concomitant regulation of T-cell activation and homeostasis. Nat Rev Immunol 4(5):387–395

    Article  CAS  PubMed  Google Scholar 

  18. Bocharov G, Quiel J, Luzyanina T, Alon H, Chiglintsev E, Chereshnev V, Meier-Schellersheim M, Paul WE, Grossman Z (2011) Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number. PNAS 108(8):3318

    Google Scholar 

  19. Zehn D, King C, Bevan MJ, Palmer E (2012) TCR signaling requirements for activating T cells and for generating memory. Cell Mol Life Sci 69(10):1565–1575

    Article  CAS  PubMed  Google Scholar 

  20. Koenen P, Heinzel S, Carrington EM, Happo L, Alexander WS, Zhang J-G, Herold MJ, Scott, Lew AM, Strasser A, Hodgkin PD (2013) Mutually exclusive regulation of T cell survival by IL-7R and antigen receptor-induced signals. Nat Commun 4:1735

    Article  PubMed  CAS  Google Scholar 

  21. Marchingo JM, Prevedello G, Kan A, Heinzel S, Hodgkin PD, Duffy KR (2016) T-cell stimuli independently sum to regulate an inherited clonal division fate. Nat Commun 7:13540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Proserpio V, Piccolo A, Haim-Vilmovsky L, Kar G, Lönnberg T, Svensson V, Pramanik J, Natarajan KN, Zhai W, Zhang X et al (2016) Single-cell analysis of CD4+ T-cell differentiation rimmeveals three major cell states and progressive acceleration of proliferation. Genome Biol 17(1):1

    CAS  Google Scholar 

  23. Mayya V, Dustin ML (2016) What scales the T cell response? Trends Immunol 37(8):513–522

    Article  CAS  PubMed  Google Scholar 

  24. Thome JJC, Grinshpun B, Kumar BV, Kubota M, Ohmura Y, Lerner H, Sempowski GD, Shen Y, Farber DL (2016) Long-term maintenance of human naĂ¯ve T cells through in situ homeostasis in lymphoid tissue sites. Sci Immunol 1(6):eaah6506

    Google Scholar 

  25. Miller MJ, Safrina O, Parker I, Cahalan MD (2004) Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200(7):847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kinjyo I, Qin J, Tan S-Y, Wellard CJ, Mrass P, Ritchie W, Doi A, Cavanagh LL, Tomura M, Sakaue-Sawano A, Cavanagh LL, Tomura M, Sakaue-Sawano A, Kanagawa O, Miyawaki A, Hodgkin PD, Weningera W (2015) Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat Commun 6:1–13

    Article  CAS  Google Scholar 

  27. Kirschner D, Pienaar E, Marino S, Linderman JJ (2017) A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment. Curr Opin Syst Biol 3:170–185

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oreskes N, Shrader-Frechette K, Belitz K et al (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263(5147):641–646

    Article  CAS  PubMed  Google Scholar 

  29. Trickett A, Kwan YL (2003) T cell stimulation and expansion using anti-CD3/CD28 beads. J Immunol Methods 275(1–2):251–255

    Article  CAS  PubMed  Google Scholar 

  30. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321(5892):1081–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JWJ, Velds A, Urbanus J, Naik SH, Jacobs H, Beltman JB et al (2013) Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340(6132):635–639

    Article  CAS  PubMed  Google Scholar 

  33. Gong C, Linderman JJ, Kirschner D (2014) Harnessing the heterogeneity of T cell differentiation fate to fine-tune generation of effector and memory T cells. Front Immunol 5:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Voisinne G, Nixon BG, Melbinger A, Gasteiger G, Vergassola M, Altan-Bonnet G (2015) T cells integrate local and global cues to discriminate between structurally similar antigens. Cell Rep 11(8):1208–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC, Stegle O (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33(2):155–160

    Article  CAS  PubMed  Google Scholar 

  36. Uhl LFK, GĂ©rard A (2020) Modes of communication between T cells and relevance for immune responses. Int J Mol Sci 21(8):2674

    Article  CAS  PubMed Central  Google Scholar 

  37. Zenke S, Palm MM, Braun J, Gavrilov A, Meiser P, Böttcher JP, Beyersdorf N, Ehl S, Gerard A, Lämmermann T, Schumacher TN, Beltman JB, Rohr JC (2020) Quorum regulation via nested antagonistic feedback circuits mediated by the receptors CD28 and CTLA-4 confers robustness to T cell population dynamics. Immunity 52(2):313–327

    Article  CAS  PubMed  Google Scholar 

  38. Kim HP, Imbert J, Leonard WJ (2006) Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine and Growth Factor Rev 17(5):349–366

    Article  CAS  Google Scholar 

  39. Feinerman O, Jentsch G, Tkach KE, Coward JW, Hathorn MM, Sneddon MW, Emonet T, Smith KA, Altan-Bonnet G (2010) Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol Syst Biol 6(1):437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Höfer T, Krichevsky O, Altan-Bonnet G (2011) Competition for IL-2 between regulatory and effector T cells to chisel immune responses. Front Immunol 3:268–268

    Google Scholar 

  41. Preston GC, Sinclair LV, Kaskar A, Hukelmann JL, Navarro MN, Ferrero I, MacDonald HR, Cowling VH, Cantrell DA (2015) Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. EMBO J 34(15):20082024

    Article  CAS  Google Scholar 

  42. De St Groth BF, Smith AL, Higgins CA (2004) T cell activation: in vivo veritas. Immunol Cell Biol 82(3):260–268

    Article  Google Scholar 

  43. Böhmer RM, Bandala-Sanchez E, Harrison LC (2011) Forward light scatter is a simple measure of T-cell activation and proliferation but is not universally suited for doublet discrimination. Cytometry Part A 79(8):646–652

    Article  CAS  Google Scholar 

  44. Lindsey WB, Lowdell MW, Marti GE, Abbasi F, Zenger V, King KM, Lamb LS Jr (2007) CD69 expression as an index of T-cell function: assay standardization, validation and use in monitoring immune recovery. Cytotherapy 9(2):123–132

    Article  CAS  PubMed  Google Scholar 

  45. Savage NDL, Harris SH, Rossi AG, De Silva B, Howie SEM, Layton GT, Lamb JR (2002) Inhibition of TCR-mediated shedding of L-selectin (CD62L) on human and mouse CD4+ T cells by metalloproteinase inhibition: analysis of the regulation of Th1/Th2 function. Eur J Immunol 32(10):2905–2914

    Article  CAS  PubMed  Google Scholar 

  46. Galkina E, Tanousis K, Preece G, Tolaini M, Kioussis D, Florey O, Haskard DO, Tedder TF, Ager A (2003) L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J Exp Med 198(9):1323–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Troy AE, Shen H (2003) Cutting edge: homeostatic proliferation of peripheral T lymphocytes is regulated by clonal competition. J Immunol 170(2):672–676

    Article  CAS  PubMed  Google Scholar 

  48. Budd RC, Cerottini JC, Horvath C, Bron C, Pedrazzini T, Howe RC, MacDonald HR Distinction of virgin and memory T lymphocytes. stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J Immunol 138(10):3120–3129 (1987)

    Google Scholar 

  49. Tough DF, Sprent J (1994) Turnover of naive-and memory-phenotype T cells. J Exp Med 179(4):1127–1136

    Article  CAS  PubMed  Google Scholar 

  50. Jenkins MK, Chu HH, McLachlan JB, Moon JJ (2010) On the composition of the preimmune repertoire of T cells specific for peptide-major histocompatibility complex ligands. Annu Rev Immunol 28:275–294

    Article  CAS  PubMed  Google Scholar 

  51. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 402:34–38

    Article  Google Scholar 

  52. Villarino AV, Tato CM, Stumhofer JS, Yao Z, Cui YK, Hennighausen L, O’Shea JJ, Hunter CA (2007) Helper T cell IL-2 production is limited by negative feedback and stat-dependent cytokine signals. J Exp Med 204(1):65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Almeida ARM, Amado IF, Reynolds J, Berges J, Lythe G, Molina-ParĂ­s C, Freitas AA (2012) Quorum-sensing in CD4+ T cell homeostasis: a hypothesis and a model. Front Immunol 3:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Drasdo D (2003) In: Alt W, Chaplain M, Griebel M, Lenz J (eds) On selected individual-based approaches to the dynamics in multicellular systems. Birkhäuser Basel, pp 169–203. Available from: https://doi.org/10.1007/978-3-0348-8043-5_15

  55. Busse D, de la Rosa M, Hobiger K, Thurley K, Flossdorf M, Scheffold A, Höfer T (2010) Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc Natl Acad Sci 107(7):3058–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fuhrmann F, Lischke T, Gross F, Scheel T, Bauer L, Kalim KW, Radbruch A, Herzel H, Hutloff A, Baumgrass R (2016) Adequate immune response ensured by binary IL-2 and graded CD25 expression in a murine transfer model. Elife 5:e20616

    Article  PubMed  PubMed Central  Google Scholar 

  57. Labowsky M (2016) An analysis of early-stage IL-2 capture times in populations of T cells diffusively interacting in a confined environment. J Theor Biol 411:37–47

    Article  CAS  PubMed  Google Scholar 

  58. Bauer AL, Beauchemin CAA, Perelson AS (2009) Agent-based modeling of host–pathogen systems: The successes and challenges. Inf Sci 179(10):1379–1389

    Article  Google Scholar 

  59. Cilfone NA, Kirschner DE, Linderman JJ (2015) Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems. Cell Mol Bioeng 8(1):119–136

    Article  CAS  PubMed  Google Scholar 

  60. Majumdar S, Lythe G, Molina-Paris C, Nandi D (2020) Modelling heterogeneity and communication in T-cell activation. Submitted

    Google Scholar 

  61. Hawkins ED, Markham JF, McGuinness LP, Hodgkin PD (2009) A single-cell pedigree analysis of alternative stochastic lymphocyte fates. Proc Natl Acad Sci 106(32):13457–13462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Markham JF, Wellard CJ, Hawkins ED, Duffy KR, Hodgkin PD (2010) A minimum of two distinct heritable factors are required to explain correlation structures in proliferating lymphocytes. J R Soc Interface 7(48):1049–1059

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chatila T, Silverman L, Miller R, Geha R (1989) Mechanisms of T cell activation by the calcium ionophore ionomycin. J Immunol 143(4):1283–1289

    Article  CAS  PubMed  Google Scholar 

  64. Mukherjee S, Ahmed A, Malu S, Nandi D (2006) Modulation of cell cycle progression by CTLA4-CD80/CD86 interactions on CD4+ T cells depends on strength of the CD3 signal: critical role for IL-2. J Leukoc Biol 80(1):66–74

    Article  CAS  PubMed  Google Scholar 

  65. Truneh A, Albert F, Golstein P, Schmitt-Verhulst A-M (1985) Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 313:318

    Article  CAS  PubMed  Google Scholar 

  66. Mukherjee S, Maiti PK, Nandi D (2002) Role of CD80, CD86, and CTLA4 on mouse CD4+ T lymphocytes in enhancing cell-cycle progression and survival after activation with PMA and ionomycin. J Leukoc Biol 72(5):921–931

    Article  CAS  PubMed  Google Scholar 

  67. Ahmed A, Mukherjee S, Nandi D (2009) Intracellular concentrations of Ca2+ modulate the strength of signal and alter the outcomes of Cytotoxic T-lymphocyte Antigen-4 (CD152)–CD80/CD86 interactions in CD4+ T lymphocytes. Immunology 126(3):363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Inaba K, Witmer MD, Steinman RM (1984) Clustering of dendritic cells, helper T lymphocytes, and histocompatible B cells during primary antibody responses in vitro. J Exp Med 160(3):858–876

    Article  CAS  PubMed  Google Scholar 

  69. Van Liedekerke P, Buttenschön A, Drasdo D (2018) Off-lattice agent-based models for cell and tumor growth: numerical methods, implementation, and applications. In: Numerical methods and advanced simulation in biomechanics and biological processes. Elsevier, pp 245–267

    Google Scholar 

  70. Schaller G, Meyer-Hermann M (2005) Multicellular tumor spheroid in an off-lattice voronoi-delaunay cell model. Phys Rev E 71(5):051910

    Article  CAS  Google Scholar 

  71. Castro M, Lythe G, Molina-París C (2017) The T cells in an ageing virtual mouse. In: Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology. Springer, pp 127–140

    Google Scholar 

  72. Government of India (2017) Cpcsea. http://envfor.nic.in/division/committee-purpose-control-and-supervision-experiments-animals-cpcsea

Download references

Acknowledgements

This collaboration began thanks to the Royal Society’s Frontiers of Science programme. We acknowledge the help of all members of the DpN laboratory and appreciate the efforts of the Central Animal Facility and Divisional Flow cytometry facility in IISc. In particular the assistance of Dr. Santosh Poddar and Mr. Vasista Adiga with imaging and flow cytometry studies is gratefully acknowledged. This study was possible due to grant support from the DBT-IISc programme and infrastructural support from grants from UGC-SAP and DST-FIST. We acknowledge support from European Union FP7-PEOPLE-2012-IRSES 317893 Mathematics for Health and Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant Lythe .

Editor information

Editors and Affiliations

A Python Code

A Python Code

The T-cell class is a subclass of the cell class, and the CD4 class is a subclass of the T-cell class. A class definition can be thought of as a template. Each time it is used, to create an in silico cell, the initial values of the attributes are set in the __init__ method. A CellPopulation is a collection of cells.

  • The method placecellsinwell assigns each unactivated cell a radius that is a random variable, uniformly distributed between r 0 − 0.5 μm and r 0 − 0.5 μm, where r 0 = 4 μm. Activated cells have radius r 0 + u r 1, where u is uniformly distributed between 0 and 1 and r 1 = 3 μm. To place N cells without overlap, each cell in turn is assigned a tentative position. If it results in no overlap with any cell already assigned position and radius, the tentative position is accepted. If not, a new tentative position is generated, where x and y coordinates are drawn independently from Gaussian distributions with mean 0 and standard deviation \(\sigma = 0.45r_0\sqrt {N}\,\upmu \)m.

  • A timestep of duration dt is carried out in the method step. Each cell, independently, may die with probability μdt. Each may also receive a signal, with probability proportional to the current value of its IL2 attribute. There are two types of signal: cytokine and TCR. The parameter γ is the fraction of signalling that is TCR signalling.

    If a non-cycling cell receives a cytokine signal, its attributes are updated according to the following rules:

    $$\displaystyle \begin{aligned} \mathtt{cell.cd25} \to \sqrt{U \times \mathtt{cell.cd25} \times CD25max}\\ \mathtt{cell.cd62l} \to \sqrt{U \times \mathtt{cell.cd62l} \times CD62Lmin},\end{aligned} $$

    where the U are drawn, independently from the uniform distribution on (0, 1). Note that the random variable \(\sqrt {U}\) has range (0, 1), mean 2∕3 and standard deviation 1∕3.

    If a non-activated cell receives a TCR signal, it becomes an activated cell. If an activated cell receives a TCR signal, it enters the cell cycle. The elapsed time from entering cell cycle to division is 24 h for the first division and 12 h for subsequent divisions.

  • The CellPopulation method localil2 calculates a nondimensionalised measure of local IL-2 concentration in each cell’s neighbourhood, which depends on the status of all cells within radius ril2, stored in the cell attribute vic. The IL-2 attribute of a cell at time t is given by

    $$\displaystyle \begin{aligned} \mathtt{cell.IL2} = \frac{n_3}{n_6+1},\end{aligned} $$

    where n 3 is the number of IL-2 producing cells in cell.vic, and n 6 is the number of CD25+ cells in cell.vic.

  • The method neighbourhood compiles a list of all cells whose centre is within radius r IL2 = 7r 0 of a given cell, stored in the attribute vic.

  • The method getstats returns the following cell counts:

    n 1 :

    all live cells

    n 2 :

    activated cells

    n 3 :

    IL-2 producing cells

    n 4 :

    cycling cells

    n 5 :

    cells in generation greater than 0.

    n 6 :

    CD25+ cells

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, S., Molina-ParĂ­s, C., Nandi, D., Lythe, G. (2021). Agent-Based Model of Heterogeneous T-Cell Activation in Vitro. In: Molina-ParĂ­s, C., Lythe, G. (eds) Mathematical, Computational and Experimental T Cell Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-57204-4_14

Download citation

Publish with us

Policies and ethics