Skip to main content

An Integrated Fuzzy-Based Simulation System for Driving Risk Management in VANETs Considering Road Condition as a New Parameter

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2020)

Abstract

In this paper, we propose a new Fuzzy-based Simulation System for Driver Risk Management in Vehicular Ad hoc Networks (VANETs). The proposed system considers Driver’s Health Condition (DHC), Vehicle’s Environment Condition (VEC), Weather Condition (WC), Road Condition (RC) and Vehicle Speed (VS) to assess the risk level. The proposed system is composed of two Fuzzy Logic Controllers (FLCs): FLC1 and FLC2. FLC1 has the following inputs: WC, RC and VS and its output, together with VEC and DHC, serve as input parameters for FLC2. The input parameters’ data can come from different sources, such as on-board and on-road sensors and cameras, sensors and cameras in the infrastructure and from the communications between the vehicles. Based on the system’s output i.e., driving risk level, a smart box informs the driver for a potential risk/danger and provides assistance. We show through simulations the effect of the considered parameters on the determination of the driving risk and demonstrate a few actions that can be performed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bylykbashi, K., Elmazi, D., Matsuo, K., Ikeda, M., Barolli, L.: Effect of security and trustworthiness for a fuzzy cluster management system in VANETs. Cogn. Syst. Res. 55, 153–163 (2019). https://doi.org/10.1016/j.cogsys.2019.01.008

    Article  Google Scholar 

  2. Bylykbashi, K., Elmazi, D., Matsuo, K., Ikeda, M., Barolli, L.: Implementation of a fuzzy-based simulation system and a testbed for improving driving conditions in VANETs. In: International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 3–12. Springer (2019). https://doi.org/10.1007/978-3-030-22354-01

  3. Bylykbashi, K., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L.: A fuzzy-based system for driving risk measurement (FSDRM) in VANETs: a comparison study of simulation and experimental results. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 14–25. Springer (2019)

    Google Scholar 

  4. Bylykbashi, K., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L.: Fuzzy-based driver monitoring system (FDMS): implementation of two intelligent FDMSs and a testbed for safe driving in VANETs. Future Gener. Comput. Syst. 105, 665–674 (2020). https://doi.org/10.1016/j.future.2019.12.030

    Article  Google Scholar 

  5. Bylykbashi, K., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L., Takizawa, M.: A fuzzy-based simulation system for driving risk management in VANETs considering weather condition as a new parameter. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 23–32. Springer (2020)

    Google Scholar 

  6. Gusikhin, O., Filev, D., Rychtyckyj, N.: Intelligent vehicle systems: applications and new trends. In: Informatics in Control Automation and Robotics, pp. 3–14. Springer (2008). https://doi.org/10.1007/978-3-540-79142-31

  7. Hartenstein, H., Laberteaux, L.: A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6), 164–171 (2008)

    Article  Google Scholar 

  8. Kandel, A.: Fuzzy Expert Systems. CRC Press, Boca Raton (1991)

    MATH  Google Scholar 

  9. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall Inc, Upper Saddle River (1987)

    MATH  Google Scholar 

  10. McNeill, F.M., Thro, E.: Fuzzy Logic: A Practical Approach. Academic Press, Cambridge (1994)

    MATH  Google Scholar 

  11. Munakata, T., Jani, Y.: Fuzzy systems: an overview. Commun. ACM 37(3), 69–77 (1994). https://doi.org/10.1145/175247.175254

    Article  Google Scholar 

  12. Qafzezi, E., Bylykbashi, K., Ikeda, M., Matsuo, K., Barolli, L.: Coordination and management of cloud, fog and edge resources in SDN-VANETs using fuzzy logic: a comparison study for two fuzzy-based systems. Internet Things 11, 100169 (2020)

    Article  Google Scholar 

  13. SAE On-Road Automated Driving (ORAD) committee: taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Technical report, Society of Automotive Engineers (SAE) (2018). https://doi.org/10.4271/J3016201806

  14. Zadeh, L.A., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty. Wiley, New York (1992)

    Google Scholar 

  15. Zimmermann, H.J.: Fuzzy Set Theory and its Applications. Springer Science & Business Media, New York (1996). https://doi.org/10.1007/978-94-015-8702-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Bylykbashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bylykbashi, K., Qafzezi, E., Ampririt, P., Matsuo, K., Barolli, L., Takizawa, M. (2021). An Integrated Fuzzy-Based Simulation System for Driving Risk Management in VANETs Considering Road Condition as a New Parameter. In: Barolli, L., Li, K., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2020. Advances in Intelligent Systems and Computing, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-57796-4_2

Download citation

Publish with us

Policies and ethics